Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/9362
Title: Symmetric Properties of the Syllogistic System Inherited From the Square of Opposition
Authors: Kumova, Bora İsmail
Keywords: Fuzzy logic
Reasoning
Set theory
Syllogisms
Publisher: Birkhäuser
Series/Report no.: Studies in Universal Logic
Abstract: The logical square Omega has a simple symmetric structure that visualises the bivalent relationships of the classical quantifiers A, I, E, O. In philosophy it is perceived as a self-complete possibilistic logic. In linguistics however its modelling capability is insufficient, since intermediate quantifiers like few, half, most, etc cannot be distinguished, which makes the existential quantifier I too generic and the universal quantifier A too specific. Furthermore, the latter is a special case of the former, i.e. A subset of I, making the square a logic with inclusive quantifiers. The inclusive quantifiers I and O can produce redundancies in linguistic systems and are too generic to differentiate any intermediate quantifiers. The redundancy can be resolved by excluding A from I, i.e. I-2=I-A, analogously E from O, i.e. O-2=O-E. Although the philosophical possibility of A subset of I is thus lost in I-2, the symmetric structure of the exclusive square (2)Omega remains preserved. The impact of the exclusion on the traditional syllogistic system S with inclusive existential quantifiers is that most of its symmetric structures are obviously lost in the syllogistic system S-2 with exclusive existential quantifiers too. Symmetry properties of S are found in the distribution of the syllogistic cases that are matched by the moods and their intersections. A syllogistic case is a distinct combination of the seven possible spaces of the Venn diagram for three sets, of which there exist 96 possible cases. Every quantifier can be represented with a fixed set of syllogistic cases and so the moods too. Therefore, the 96 cases open a universe of validity for all moods of the syllogistic system S, as well as all fuzzy-syllogistic systems S-n, with n-1 intermediate quantifiers. As a by-product of the fuzzy syllogistic system and its properties, we suggest in return that the logical square of opposition can be generalised to a fuzzy-logical graph of opposition, for 2<n.
URI: https://doi.org/10.1007/978-3-319-45062-9_6
https://hdl.handle.net/11147/9362
ISBN: 978-3-319-45062-9
Appears in Collections:Computer Engineering / Bilgisayar Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File SizeFormat 
kumova2017.pdf1.13 MBAdobe PDFView/Open
Show full item record



CORE Recommender

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.