Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/9113
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Tekeli, Ulaş | - |
dc.contributor.author | Baştanlar, Yalın | - |
dc.date.accessioned | 2020-07-25T22:03:47Z | - |
dc.date.available | 2020-07-25T22:03:47Z | - |
dc.date.issued | 2019 | - |
dc.identifier.issn | 1300-0632 | - |
dc.identifier.issn | 1303-6203 | - |
dc.identifier.uri | https://doi.org/10.3906/elk-1808-130 | - |
dc.identifier.uri | https://hdl.handle.net/11147/9113 | - |
dc.identifier.uri | https://search.trdizin.gov.tr/yayin/detay/337141 | - |
dc.description.abstract | Camera-traps are motion triggered cameras that are used to observe animals in nature. The number of images collected from camera-traps has increased significantly with the widening use of camera-traps thanks to advances in digital technology. A great workload is required for wild-life researchers to group and label these images. We propose a system to decrease the amount of time spent by the researchers by eliminating useless images from raw camera-trap data. These images are too bright, too dark, blurred, or they contain no animals To eliminate bright, dark, and blurred images we employ techniques based on image histograms and fast Fourier transform. To eliminate the images without animals, we propose a system combining convolutional neural networks and background subtraction. We experimentally show that the proposed approach keeps 99% of photos with animals while eliminating more than 50% of photos without animals. We also present a software prototype that employs developed algorithms to eliminate useless images. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Türkiye Klinikleri Journal of Medical Sciences | en_US |
dc.relation.ispartof | Turkish Journal of Electrical Engineering and Computer Sciences | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Camera-trap | en_US |
dc.subject | Image processing | en_US |
dc.subject | Computer vision | en_US |
dc.subject | Object detection | en_US |
dc.subject | Convolutional neural networks | en_US |
dc.subject | Deep learning | en_US |
dc.title | Elimination of useless images from raw camera-trap data | en_US |
dc.type | Article | en_US |
dc.authorid | 0000-0002-3774-6872 | - |
dc.institutionauthor | Tekeli, Ulaş | - |
dc.institutionauthor | Baştanlar, Yalın | - |
dc.department | İzmir Institute of Technology. Electrical and Electronics Engineering | en_US |
dc.identifier.volume | 27 | en_US |
dc.identifier.issue | 4 | en_US |
dc.identifier.startpage | 2395 | en_US |
dc.identifier.endpage | 2411 | en_US |
dc.identifier.wos | WOS:000482742800002 | en_US |
dc.identifier.scopus | 2-s2.0-85072610534 | en_US |
dc.relation.publicationcategory | Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.doi | 10.3906/elk-1808-130 | - |
dc.relation.doi | 10.3906/elk-1808-130 | en_US |
dc.coverage.doi | 10.3906/elk-1808-130 | en_US |
dc.identifier.trdizinid | 337141 | en_US |
dc.identifier.wosquality | Q4 | - |
dc.identifier.scopusquality | Q3 | - |
item.fulltext | With Fulltext | - |
item.grantfulltext | open | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
crisitem.author.dept | 03.04. Department of Computer Engineering | - |
Appears in Collections: | Computer Engineering / Bilgisayar Mühendisliği Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection TR Dizin İndeksli Yayınlar / TR Dizin Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
Elimination of useless.pdf | 11.62 MB | Adobe PDF | View/Open |
CORE Recommender
SCOPUSTM
Citations
2
checked on Nov 15, 2024
WEB OF SCIENCETM
Citations
2
checked on Nov 9, 2024
Page view(s)
66,126
checked on Nov 18, 2024
Download(s)
250
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.