Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/9113
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTekeli, Ulaş-
dc.contributor.authorBaştanlar, Yalın-
dc.date.accessioned2020-07-25T22:03:47Z-
dc.date.available2020-07-25T22:03:47Z-
dc.date.issued2019-
dc.identifier.issn1300-0632-
dc.identifier.issn1303-6203-
dc.identifier.urihttps://doi.org/10.3906/elk-1808-130-
dc.identifier.urihttps://hdl.handle.net/11147/9113-
dc.descriptionTekeli, Ulas/0000-0003-0492-3059en_US
dc.descriptionWOS: 000482742800002en_US
dc.description.abstractCamera-traps are motion triggered cameras that are used to observe animals in nature. The number of images collected from camera-traps has increased significantly with the widening use of camera-traps thanks to advances in digital technology. A great workload is required for wild-life researchers to group and label these images. We propose a system to decrease the amount of time spent by the researchers by eliminating useless images from raw camera-trap data. These images are too bright, too dark, blurred, or they contain no animals To eliminate bright, dark, and blurred images we employ techniques based on image histograms and fast Fourier transform. To eliminate the images without animals, we propose a system combining convolutional neural networks and background subtraction. We experimentally show that the proposed approach keeps 99% of photos with animals while eliminating more than 50% of photos without animals. We also present a software prototype that employs developed algorithms to eliminate useless images.en_US
dc.language.isoenen_US
dc.publisherTürkiye Klinikleri Journal of Medical Sciencesen_US
dc.relation.ispartofTurkish Journal of Electrical Engineering and Computer Sciencesen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCamera-trapen_US
dc.subjectimage processingen_US
dc.subjectcomputer visionen_US
dc.subjectobject detectionen_US
dc.subjectbackground subtractionen_US
dc.subjectconvolutional neural networksen_US
dc.subjectdeep learningen_US
dc.titleElimination of useless images from raw camera-trap dataen_US
dc.typeArticleen_US
dc.departmentIzmir Institute of Technology. Electronics and Communication Engineeringen_US
dc.identifier.volume27en_US
dc.identifier.issue4en_US
dc.identifier.startpage2395en_US
dc.identifier.endpage2411en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.cont.department-temp[Tekeli, Ulas; Bastanlar, Yalin] Izmir Inst Technol, Comp Engn Dept, Izmir, Turkeyen_US
dc.identifier.doi10.3906/elk-1808-130-
dc.relation.doi10.3906/elk-1808-130en_US
dc.coverage.doi10.3906/elk-1808-130en_US
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.grantfulltextnone-
crisitem.author.deptDepartment of Computer Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record

CORE Recommender

Page view(s)

48
checked on Oct 26, 2021

Google ScholarTM

Check

Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.