Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/9113
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTekeli, Ulaş-
dc.contributor.authorBaştanlar, Yalın-
dc.date.accessioned2020-07-25T22:03:47Z-
dc.date.available2020-07-25T22:03:47Z-
dc.date.issued2019-
dc.identifier.issn1300-0632-
dc.identifier.issn1303-6203-
dc.identifier.urihttps://doi.org/10.3906/elk-1808-130-
dc.identifier.urihttps://hdl.handle.net/11147/9113-
dc.identifier.urihttps://search.trdizin.gov.tr/yayin/detay/337141-
dc.description.abstractCamera-traps are motion triggered cameras that are used to observe animals in nature. The number of images collected from camera-traps has increased significantly with the widening use of camera-traps thanks to advances in digital technology. A great workload is required for wild-life researchers to group and label these images. We propose a system to decrease the amount of time spent by the researchers by eliminating useless images from raw camera-trap data. These images are too bright, too dark, blurred, or they contain no animals To eliminate bright, dark, and blurred images we employ techniques based on image histograms and fast Fourier transform. To eliminate the images without animals, we propose a system combining convolutional neural networks and background subtraction. We experimentally show that the proposed approach keeps 99% of photos with animals while eliminating more than 50% of photos without animals. We also present a software prototype that employs developed algorithms to eliminate useless images.en_US
dc.language.isoenen_US
dc.publisherTürkiye Klinikleri Journal of Medical Sciencesen_US
dc.relation.ispartofTurkish Journal of Electrical Engineering and Computer Sciencesen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCamera-trapen_US
dc.subjectImage processingen_US
dc.subjectComputer visionen_US
dc.subjectObject detectionen_US
dc.subjectConvolutional neural networksen_US
dc.subjectDeep learningen_US
dc.titleElimination of useless images from raw camera-trap dataen_US
dc.typeArticleen_US
dc.authorid0000-0002-3774-6872-
dc.institutionauthorTekeli, Ulaş-
dc.institutionauthorBaştanlar, Yalın-
dc.departmentİzmir Institute of Technology. Electrical and Electronics Engineeringen_US
dc.identifier.volume27en_US
dc.identifier.issue4en_US
dc.identifier.startpage2395en_US
dc.identifier.endpage2411en_US
dc.identifier.wosWOS:000482742800002en_US
dc.identifier.scopus2-s2.0-85072610534en_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.3906/elk-1808-130-
dc.relation.doi10.3906/elk-1808-130en_US
dc.coverage.doi10.3906/elk-1808-130en_US
dc.identifier.trdizinid337141en_US
dc.identifier.wosqualityQ4-
dc.identifier.scopusqualityQ3-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept03.04. Department of Computer Engineering-
Appears in Collections:Computer Engineering / Bilgisayar Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
TR Dizin İndeksli Yayınlar / TR Dizin Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
Elimination of useless.pdf11.62 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

2
checked on Nov 9, 2024

Page view(s)

66,126
checked on Nov 18, 2024

Download(s)

250
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.