Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/9065
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÖz, Işıl-
dc.contributor.authorBhatti, Muhammad Khurram-
dc.contributor.authorPopov, Konstantin-
dc.contributor.authorBrorsson, Mats-
dc.date.accessioned2020-07-25T22:03:26Z-
dc.date.available2020-07-25T22:03:26Z-
dc.date.issued2019-
dc.identifier.issn0218-1266-
dc.identifier.issn1793-6454-
dc.identifier.urihttps://doi.org/10.1142/S0218126619500609-
dc.identifier.urihttps://hdl.handle.net/11147/9065-
dc.description.abstractAs multicore systems evolve by increasing the number of parallel execution units, parallel programming models have been released to exploit parallelism in the applications. Task-based programming model uses task abstractions to specify parallel tasks and schedules tasks onto processors at runtime. In order to increase the efficiency and get the highest performance, it is required to identify which runtime configuration is needed and how processor cores must be shared among tasks. Exploring design space for all possible scheduling and runtime options, especially for large input data, becomes infeasible and requires statistical modeling. Regression-based modeling determines the effects of multiple factors on a response variable, and makes predictions based on statistical analysis. In this work, we propose a regression-based modeling approach to predict the task-based program performance for different scheduling parameters with variable data size. We execute a set of task-based programs by varying the runtime parameters, and conduct a systematic measurement for influencing factors on execution time. Our approach uses executions with different configurations for a set of input data, and derives different regression models to predict execution time for larger input data. Our results show that regression models provide accurate predictions for validation inputs with mean error rate as low as 6.3%, and 14% on average among four task-based programs.en_US
dc.language.isoenen_US
dc.publisherWorld Scientific Publishingen_US
dc.relation.ispartofJournal of Circuits Systems and Computersen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectPerformance predictionen_US
dc.subjectTask-based programsen_US
dc.subjectRegressionen_US
dc.titleRegression-based prediction for task-based program performanceen_US
dc.typeArticleen_US
dc.authorid0000-0002-8310-1143-
dc.institutionauthorÖz, Işıl-
dc.departmentİzmir Institute of Technology. Computer Engineeringen_US
dc.identifier.volume28en_US
dc.identifier.issue4en_US
dc.identifier.wosWOS:000462969800009en_US
dc.identifier.scopus2-s2.0-85049081368en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1142/S0218126619500609-
dc.relation.doi10.1142/S0218126619500609en_US
dc.coverage.doi10.1142/S0218126619500609en_US
dc.identifier.wosqualityQ4-
dc.identifier.scopusqualityQ3-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept03.04. Department of Computer Engineering-
Appears in Collections:Computer Engineering / Bilgisayar Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
oz2018.pdf844.05 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

3
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

3
checked on Nov 9, 2024

Page view(s)

1,562
checked on Nov 18, 2024

Download(s)

1,188
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.