Please use this identifier to cite or link to this item:
Title: Modification of surface charge characteristics for unsupported nanostructured titania-zirconia UF/NF membrane top layers with calcination temperature
Authors: Erdem, İlker
Çiftçioğlu, Muhsin
Keywords: Titania
Surface charge
Issue Date: 2020
Publisher: Springer
Abstract: Ceramic membranes are more advantageous alternatives especially for harsh working conditions when compared with the polymeric membranes. The porous multilayer structure of the ceramic membranes (composed of support, intermediate, and top layers) can be prepared via different oxides. Titania and zirconia, having superior properties, are mainly preferred for the top layer formation. The separation properties of the membrane are both dependent on pore morphology and surface charge of the oxide(s) forming the top layer. The effect of surface charge in separation may be very significant in case of filtration of charged species with relatively lower mass as in the ultrafiltration (UF) and nanofiltration (NF). In this study, unsupported membrane top layers were prepared with varying titania/zirconia ratios by sol-gel technique. Their surface charges at different pH conditions after calcination at varying temperatures (400 degrees, 500 degrees, and 600 degrees C) were determined. The surface charge of the pure titania (full Ti) top layer was decreasing with the increasing calcination temperature. The highest magnitudes of zeta potential for both acidic and basic conditions were measured via Zr rich top layer (TiZr2575) at calcination temperatures >= 500 degrees C, which was composed of anatase, rutile (titania), and tetragonal (zirconia) phases after calcination. The tailor-made top layer can be prepared with modifications during membrane preparation.
ISSN: 0004-881X
Appears in Collections:Chemical Engineering / Kimya Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File SizeFormat 
s41779-019-00352-4.pdf3.48 MBAdobe PDFView/Open
Show full item record

CORE Recommender


checked on May 27, 2023

Page view(s)

checked on May 22, 2023


checked on May 22, 2023

Google ScholarTM



Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.