Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/8810
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPolat, Mustafa-
dc.contributor.authorSevinçli, Haldun-
dc.contributor.authorGüçlü, Alev Devrim-
dc.date.accessioned2020-07-18T08:31:26Z-
dc.date.available2020-07-18T08:31:26Z-
dc.date.issued2020-
dc.identifier.issn2469-9950-
dc.identifier.issn2469-9969-
dc.identifier.urihttps://doi.org/10.1103/PhysRevB.101.205429-
dc.identifier.urihttps://hdl.handle.net/11147/8810-
dc.description.abstractIn this paper, we perform a systematic study on the electronic, magnetic, and transport properties of the hexagonal graphene quantum dots (GQDs) with armchair edges in the presence of a charged impurity using two different configurations: (1) a central Coulomb potential and (2) a positively charged carbon vacancy. The tight-binding and the half-filled extended Hubbard models are numerically solved and compared with each other in order to reveal the effect of electron interactions and system sizes. Numerical results point out that off-site Coulomb repulsion leads to an increase in the critical coupling constant to beta(c) = 0.6 for a central Coulomb potential. This critical value of beta is found to be independent of the GQD size, reflecting its universality even in the presence of electron-electron interactions. In addition, a sudden downshift in the transmission peaks shows a clear signature of the transition from subcritical beta < beta(c) to the supercritical beta > beta(c) regime. On the other hand, for a positively charged vacancy, collapse of the lowest bound state occurs at beta(c) = 0.7 for the interacting case. Interestingly, the local magnetic moment, induced by a bare carbon vacancy, is totally quenched when the vacancy is subcritically charged, whereas the valley splittings in electron and hole channels continue to exist in both regimes.en_US
dc.language.isoenen_US
dc.publisherAmerican Physical Societyen_US
dc.relation.ispartofPhysical Review Ben_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectGraphene quantum dotsen_US
dc.subjectHubbard modelsen_US
dc.subjectMagnetic momentsen_US
dc.titleCollapse of the vacuum in hexagonal graphene quantum dots: A comparative study between tight-binding and mean-field Hubbard modelsen_US
dc.typeArticleen_US
dc.institutionauthorPolat, Mustafa-
dc.institutionauthorSevinçli, Haldun-
dc.institutionauthorGüçlü, Alev Devrim-
dc.departmentİzmir Institute of Technology. Physicsen_US
dc.departmentİzmir Institute of Technology. Materials Science and Engineeringen_US
dc.identifier.volume101en_US
dc.identifier.issue20en_US
dc.identifier.wosWOS:000535860200001en_US
dc.identifier.scopus2-s2.0-85085841720en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1103/PhysRevB.101.205429-
dc.relation.doi10.1103/PhysRevB.101.205429en_US
dc.coverage.doi10.1103/PhysRevB.101.205429en_US
local.message.claim2022-06-07T14:27:42.231+0300|||rp00053|||submit_approve|||dc_contributor_author|||None*
dc.identifier.wosqualityQ2-
dc.identifier.scopusqualityQ1-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairetypeArticle-
crisitem.author.dept04.05. Department of Pyhsics-
crisitem.author.dept03.09. Department of Materials Science and Engineering-
crisitem.author.dept04.05. Department of Pyhsics-
Appears in Collections:Materials Science and Engineering / Malzeme Bilimi ve Mühendisliği
Physics / Fizik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
PhysRevB.101.205429.pdf3.07 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

5
checked on Apr 5, 2024

WEB OF SCIENCETM
Citations

5
checked on Mar 27, 2024

Page view(s)

1,140
checked on Apr 15, 2024

Download(s)

96
checked on Apr 15, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.