Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/7871
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBandara, Madhushi-
dc.contributor.authorBehnaz, Ali-
dc.contributor.authorRabhi, Fethi A.-
dc.contributor.authorDemirörs, Onurtr
dc.date.accessioned2020-07-18T03:35:18Z-
dc.date.available2020-07-18T03:35:18Z-
dc.date.issued2019-
dc.identifier.isbn9783030116408-
dc.identifier.issn1865-1348-
dc.identifier.urihttps://doi.org/10.1007/978-3-030-11641-5_43-
dc.identifier.urihttps://hdl.handle.net/11147/7871-
dc.description16th International Conference on Business Process Management, BPM International Workshops 2018 -- 9 September 2018 through 14 September 2018en_US
dc.description.abstractComprehensively describing data analytics requirements is becoming an integral part of developing enterprise information systems. It is a challenging task for analysts to completely elicit all requirements shared by the organization’s decision makers. With a multitude of data available from e-commerce sites, social media and data warehouses selecting the correct set of data and suitable techniques for an analysis itself is difficult and time-consuming. The reason is that analysts have to comprehend multiple dimensions such as existing analytics techniques, background knowledge in the domain of interest and the quality of available data. In this paper, we propose to use semantic models to represent different spheres of knowledge related to data analytics space and use them to assist in analytics requirements definition. By following this approach users can create a sound analytics requirements specification, linked with concepts from the operation domain, available data, analytics techniques and their implementations. Such requirements specifications can be used to drive the creation and management of analytics solutions, well aligned with organizational objectives. We demonstrate the capabilities of the proposed method by applying on a data analytics project for house price prediction. © 2019, Springer Nature Switzerland AG.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofLecture Notes in Business Information Processingen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAnalytics processen_US
dc.subjectOntologyen_US
dc.subjectRequirementsen_US
dc.titleFrom requirements to data analytics process: An ontology-based approachen_US
dc.typeConference Objecten_US
dc.institutionauthorDemirörs, Onurtr
dc.departmentİzmir Institute of Technology. Computer Engineeringen_US
dc.identifier.volume342en_US
dc.identifier.startpage543en_US
dc.identifier.endpage552en_US
dc.identifier.scopus2-s2.0-85061393439en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıtr
dc.identifier.doi10.1007/978-3-030-11641-5_43-
dc.relation.doi10.1007/978-3-030-11641-5_43en_US
dc.coverage.doi10.1007/978-3-030-11641-5_43en_US
dc.identifier.wosqualityN/A-
dc.identifier.scopusqualityQ3-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.openairetypeConference Object-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.grantfulltextopen-
crisitem.author.dept03.04. Department of Computer Engineering-
Appears in Collections:Computer Engineering / Bilgisayar Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File SizeFormat 
10.1007@978-3-030-11641-543.pdf639.74 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

8
checked on Nov 29, 2024

Page view(s)

246
checked on Dec 2, 2024

Download(s)

124
checked on Dec 2, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.