Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/7844
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGürbüz, Özge-
dc.contributor.authorRabhi, Fethi-
dc.contributor.authorDemirörs, Onur-
dc.date.accessioned2020-07-18T03:35:15Z-
dc.date.available2020-07-18T03:35:15Z-
dc.date.issued2019-
dc.identifier.issn1463-7154-
dc.identifier.urihttps://doi.org/10.1108/BPMJ-05-2018-0144-
dc.identifier.urihttps://hdl.handle.net/11147/7844-
dc.description.abstractPurpose: Integrating ontologies with process modeling has gained increasing attention in recent years since it enhances data representations and makes it easier to query, store and reuse knowledge at the semantic level. The authors focused on a process and ontology integration approach by extracting the activities, roles and other concepts related to the process models from organizational sources using natural language processing techniques. As part of this study, a process ontology population (PrOnPo) methodology and tool is developed, which uses natural language parsers for extracting and interpreting the sentences and populating an event-driven process chain ontology in a fully automated or semi-automated (user assisted) manner. The purpose of this paper is to present applications of PrOnPo tool in different domains. Design/methodology/approach: A multiple case study is conducted by selecting five different domains with different types of guidelines. Process ontologies are developed using the PrOnPo tool in a semi-automated and fully automated fashion and manually. The resulting ontologies are compared and evaluated in terms of time-effort and recall-precision metrics. Findings: From five different domains, the results give an average of 70 percent recall and 80 percent precision for fully automated usage of the PrOnPo tool, showing that it is applicable and generalizable. In terms of efficiency, the effort spent for process ontology development is decreased from 250 person-minutes to 57 person-minutes (semi-automated). Originality/value: The PrOnPo tool is the first one to automatically generate integrated process ontologies and process models from guidelines written in natural language. © 2018, Emerald Publishing Limited.en_US
dc.language.isoenen_US
dc.publisherEmerald Group Publishingen_US
dc.relation.ispartofBusiness Process Management Journalen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBusiness process modellingen_US
dc.subjectNatural language processingen_US
dc.subjectOntology developmenten_US
dc.subjectProcess ontologyen_US
dc.titleProcess ontology development using natural language processing: a multiple case studyen_US
dc.typeArticleen_US
dc.institutionauthorDemirörs, Onur-
dc.departmentİzmir Institute of Technology. Computer Engineeringen_US
dc.identifier.volume25en_US
dc.identifier.issue6en_US
dc.identifier.startpage1208en_US
dc.identifier.endpage1227en_US
dc.identifier.wosWOS:000486223800002en_US
dc.identifier.scopus2-s2.0-85059302100en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1108/BPMJ-05-2018-0144-
dc.relation.doi10.1108/BPMJ-05-2018-0144en_US
dc.coverage.doi10.1108/BPMJ-05-2018-0144en_US
dc.identifier.wosqualityQ3-
dc.identifier.scopusqualityQ1-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept03.04. Department of Computer Engineering-
Appears in Collections:Computer Engineering / Bilgisayar Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
10-1108_BPMJ-05-2018-0144.pdf378.4 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

7
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

5
checked on Nov 9, 2024

Page view(s)

1,296
checked on Nov 18, 2024

Download(s)

374
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.