Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/7821
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAlagöz, Yusuf-
dc.contributor.authorBüyükaşık, Engin-
dc.date.accessioned2020-07-18T03:35:12Z-
dc.date.available2020-07-18T03:35:12Z-
dc.date.issued2020-
dc.identifier.issn0219-4988-
dc.identifier.issn1793-6829-
dc.identifier.urihttps://doi.org/10.1142/S021949882150095X-
dc.identifier.urihttps://hdl.handle.net/11147/7821-
dc.description.abstractWeakening the notion of R-projectivity, a right R-module M is called max-projective provided that each homomorphism f: M ? R/I, where I is any maximal right ideal, factors through the canonical projection : R ? R/I. We study and investigate properties of max-projective modules. Several classes of rings whose injective modules are R-projective (respectively, max-projective) are characterized. For a commutative Noetherian ring R, we prove that injective modules are R-projective if and only if R = A × B, where A is QF and B is a small ring. If R is right hereditary and right Noetherian then, injective right modules are max-projective if and only if R = S × T, where S is a semisimple Artinian and T is a right small ring. If R is right hereditary then, injective right modules are max-projective if and only if each injective simple right module is projective. Over a right perfect ring max-projective modules are projective. We discuss the existence of non-perfect rings whose max-projective right modules are projective. © 2020 World Scientific Publishing Company.en_US
dc.language.isoenen_US
dc.publisherWorld Scientific Publishingen_US
dc.relation.ispartofJournal of Algebra and its Applicationsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectInjective modulesen_US
dc.subjectMax-projective modulesen_US
dc.subjectRings (Algebra)en_US
dc.subjectR -projective modulesen_US
dc.titleMax-projective modulesen_US
dc.typeArticleen_US
dc.institutionauthorAlagöz, Yusuf-
dc.institutionauthorBüyükaşık, Engin-
dc.departmentİzmir Institute of Technology. Mathematicsen_US
dc.identifier.wosWOS:000649081300004en_US
dc.identifier.scopus2-s2.0-85085366957en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1142/S021949882150095X-
dc.relation.doi10.1142/S021949882150095Xen_US
dc.coverage.doi10.1142/S021949882150095Xen_US
local.message.claim2022-09-05T11:59:09.383+0300*
local.message.claim|rp01503*
local.message.claim|submit_approve*
local.message.claim|dc_contributor_author*
local.message.claim|None*
dc.identifier.wosqualityQ3-
dc.identifier.scopusqualityQ3-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept01. Izmir Institute of Technology-
crisitem.author.dept04.02. Department of Mathematics-
Appears in Collections:Mathematics / Matematik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
10.1142@S021949882150095X.pdf400.87 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

6
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

5
checked on Nov 9, 2024

Page view(s)

284
checked on Nov 18, 2024

Download(s)

484
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.