Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/7821
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Alagöz, Yusuf | - |
dc.contributor.author | Büyükaşık, Engin | - |
dc.date.accessioned | 2020-07-18T03:35:12Z | - |
dc.date.available | 2020-07-18T03:35:12Z | - |
dc.date.issued | 2020 | - |
dc.identifier.issn | 0219-4988 | - |
dc.identifier.issn | 1793-6829 | - |
dc.identifier.uri | https://doi.org/10.1142/S021949882150095X | - |
dc.identifier.uri | https://hdl.handle.net/11147/7821 | - |
dc.description.abstract | Weakening the notion of R-projectivity, a right R-module M is called max-projective provided that each homomorphism f: M ? R/I, where I is any maximal right ideal, factors through the canonical projection : R ? R/I. We study and investigate properties of max-projective modules. Several classes of rings whose injective modules are R-projective (respectively, max-projective) are characterized. For a commutative Noetherian ring R, we prove that injective modules are R-projective if and only if R = A × B, where A is QF and B is a small ring. If R is right hereditary and right Noetherian then, injective right modules are max-projective if and only if R = S × T, where S is a semisimple Artinian and T is a right small ring. If R is right hereditary then, injective right modules are max-projective if and only if each injective simple right module is projective. Over a right perfect ring max-projective modules are projective. We discuss the existence of non-perfect rings whose max-projective right modules are projective. © 2020 World Scientific Publishing Company. | en_US |
dc.language.iso | en | en_US |
dc.publisher | World Scientific Publishing | en_US |
dc.relation.ispartof | Journal of Algebra and its Applications | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Injective modules | en_US |
dc.subject | Max-projective modules | en_US |
dc.subject | Rings (Algebra) | en_US |
dc.subject | R -projective modules | en_US |
dc.title | Max-Projective Modules | en_US |
dc.type | Article | en_US |
dc.institutionauthor | Alagöz, Yusuf | - |
dc.institutionauthor | Büyükaşık, Engin | - |
dc.department | İzmir Institute of Technology. Mathematics | en_US |
dc.identifier.wos | WOS:000649081300004 | - |
dc.identifier.scopus | 2-s2.0-85085366957 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.doi | 10.1142/S021949882150095X | - |
dc.relation.doi | 10.1142/S021949882150095X | en_US |
dc.coverage.doi | 10.1142/S021949882150095X | - |
local.message.claim | 2022-09-05T11:59:09.383+0300 | * |
local.message.claim | |rp01503 | * |
local.message.claim | |submit_approve | * |
local.message.claim | |dc_contributor_author | * |
local.message.claim | |None | * |
dc.identifier.wosquality | Q3 | - |
dc.identifier.scopusquality | Q3 | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.languageiso639-1 | en | - |
item.openairetype | Article | - |
item.grantfulltext | open | - |
item.fulltext | With Fulltext | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 01. Izmir Institute of Technology | - |
crisitem.author.dept | 04.02. Department of Mathematics | - |
Appears in Collections: | Mathematics / Matematik Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
10.1142@S021949882150095X.pdf | 400.87 kB | Adobe PDF | View/Open |
CORE Recommender
SCOPUSTM
Citations
8
checked on Mar 28, 2025
WEB OF SCIENCETM
Citations
7
checked on Mar 29, 2025
Page view(s)
370
checked on Mar 31, 2025
Download(s)
534
checked on Mar 31, 2025
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.