Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/7789
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBinici, Rıfkı Can-
dc.contributor.authorŞahin, Umut-
dc.contributor.authorAyanzadeh, Aydın-
dc.contributor.authorTöreyin, Behçet Uğur-
dc.contributor.authorÖnal, Sevgi-
dc.contributor.authorOkvur, Devrim Pesen-
dc.contributor.authorYalçın Özuysal, Özden-
dc.contributor.authorÜnay, Devrim-
dc.date.accessioned2020-07-18T03:35:04Z-
dc.date.available2020-07-18T03:35:04Z-
dc.date.issued2019-
dc.identifier.isbn9781728124209-
dc.identifier.urihttps://doi.org/10.1109/TIPTEKNO.2019.8895080-
dc.identifier.urihttps://hdl.handle.net/11147/7789-
dc.description2019 Medical Technologies Congress, TIPTEKNO 2019; Palm Wings Ephesus HotelIzmir; Turkey; 3 October 2019 through 5 October 2019en_US
dc.description.abstractPhase contrast optical microscopy is a preferred imaging technique for live-cell, temporal analysis. Segmentation of cells from time series data acquired with this technique is a labor-intensive and time-consuming task that cell biology researchers need solution for. In this study traditional image processing and deep learning based approaches for automated cell segmentation from phase contrast optical microscopy time series are presented, and their performances are evaluated against manually annotated datasets. © 2019 IEEE.en_US
dc.description.abstractFaz kontrast optik mikroskopi hücrelerin canlı ortamlarında zamana bağlı incelenmesi için tercih edilen görüntüleme yöntemidir. Bu yöntem ile elde edilen zaman serisi görüntülerinde hücrelerin bölütlenmesi işi hücre biyolojisi araştırmacılarının çözümüne ihtiyaç duyduğu emek yoğun ve zaman alan bir iştir. Bu çalışmada faz kontrast optik mikroskopi zaman serilerinde hücrelerin otomatik bölütlenmesi için geleneksel görüntü işleme ve derin öğrenme temelli yöntemler önerilmiş ve başarımları elle işaretlenmiş veri kümelerinde nicel olarak ölçülmüştür.-
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofTıp Teknolojileri Kongresi, TIPTEKNO 2019en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCell segmentationen_US
dc.subjectDeep learningen_US
dc.subjectPhase contrast optical microscopyen_US
dc.subjectSegNeten_US
dc.subjectTime seriesen_US
dc.titleFaz kontrast optik mikroskopi zaman serisi görüntülerinde hücrelerin otomatik bölütlenmesien_US
dc.title.alternativeAutomated segmentation of cells in phase contrast optical microscopy time series imagesen_US
dc.typeConference Objecten_US
dc.institutionauthorÖnal, Sevgi-
dc.institutionauthorOkvur, Devrim Pesen-
dc.institutionauthorYalçın Özuysal, Özden-
dc.institutionauthorÖnal, Sevgi-
dc.institutionauthorOkvur, Devrim Pesen-
dc.institutionauthorYalçın Özuysal, Özden-
dc.departmentİzmir Institute of Technology. Molecular Biology and Geneticsen_US
dc.identifier.wosWOS:000516830900052en_US
dc.identifier.scopus2-s2.0-85075606705en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1109/TIPTEKNO.2019.8895080-
dc.relation.doi10.1109/TIPTEKNO.2019.8895080en_US
dc.coverage.doi10.1109/TIPTEKNO.2019.8895080en_US
dc.identifier.wosqualityN/A-
dc.identifier.scopusqualityN/A-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeConference Object-
crisitem.author.dept04.03. Department of Molecular Biology and Genetics-
crisitem.author.dept04.03. Department of Molecular Biology and Genetics-
Appears in Collections:Molecular Biology and Genetics / Moleküler Biyoloji ve Genetik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
08895080.pdfConference Paper898.28 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

6
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

2
checked on Oct 26, 2024

Page view(s)

380
checked on Nov 18, 2024

Download(s)

332
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.