Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/7588
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCorrêa, Wellington José-
dc.contributor.authorÖzsarı, Türker-
dc.date.accessioned2020-01-16T07:15:51Z
dc.date.available2020-01-16T07:15:51Z
dc.date.issued2018-06en_US
dc.identifier.citationCorrêa, W. J., and Özsarı, T. (2018). Complex Ginzburg–Landau equations with dynamic boundary conditions. Nonlinear Analysis: Real World Applications, 41, 607-641. doi:10.1016/j.nonrwa.2017.12.001en_US
dc.identifier.issn1468-1218
dc.identifier.issn1468-1218-
dc.identifier.urihttps://doi.org/10.1016/j.nonrwa.2017.12.001
dc.identifier.urihttps://hdl.handle.net/11147/7588
dc.description.abstractThe initial-dynamic boundary value problem (idbvp) for the complex Ginzburg–Landau equation (CGLE) on bounded domains of RN is studied by converting the given mathematical model into a Wentzell initial–boundary value problem (ibvp). First, the corresponding linear homogeneous idbvp is considered. Secondly, the forced linear idbvp with both interior and boundary forcings is studied. Then, the nonlinear idbvp with Lipschitz nonlinearity in the interior and monotone nonlinearity on the boundary is analyzed. The local well-posedness of the idbvp for the CGLE with power type nonlinearities is obtained via a contraction mapping argument. Global well-posedness for strong solutions is shown. Global existence and uniqueness of weak solutions are proven. Smoothing effect of the corresponding evolution operator is proved. This helps to get better well-posedness results than the known results on idbvp for nonlinear Schrödinger equations (NLS). An interesting result of this paper is proving that solutions of NLS subject to dynamic boundary conditions can be obtained as inviscid limits of the solutions of the CGLE subject to same type of boundary conditions. Finally, long time behavior of solutions is characterized and exponential decay rates are obtained at the energy level by using control theoretic tools.en_US
dc.description.sponsorshipTUBITAK (115F055)en_US
dc.language.isoenen_US
dc.publisherElsevier Ltd.en_US
dc.relation.ispartofNonlinear Analysis: Real World Applicationsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectInviscid limitsen_US
dc.subjectDynamic boundary conditionsen_US
dc.subjectNonlinear equationsen_US
dc.subjectLandau equationen_US
dc.titleComplex Ginzburg–Landau equations with dynamic boundary conditionsen_US
dc.typeArticleen_US
dc.authorid0000-0003-4240-5252en_US
dc.institutionauthorÖzsarı, Türker-
dc.departmentİzmir Institute of Technology. Mathematicsen_US
dc.identifier.volume41en_US
dc.identifier.startpage607en_US
dc.identifier.endpage641en_US
dc.identifier.wosWOS:000424721700031en_US
dc.identifier.scopus2-s2.0-85038826755en_US
dc.relation.tubitakinfo:eu-repo/grantAgreement/TUBITAK/MFAG/115F055
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1016/j.nonrwa.2017.12.001-
dc.relation.doi10.1016/j.nonrwa.2017.12.001en_US
dc.coverage.doi10.1016/j.nonrwa.2017.12.001en_US
dc.identifier.wosqualityQ2-
dc.identifier.scopusqualityQ2-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept04.02. Department of Mathematics-
Appears in Collections:Mathematics / Matematik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
1-s2.0-S146812181730189X-main.pdfMakale (Article)920.76 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

6
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

6
checked on Nov 9, 2024

Page view(s)

1,854
checked on Nov 18, 2024

Download(s)

308
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.