Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/7588
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Corrêa, Wellington José | - |
dc.contributor.author | Özsarı, Türker | - |
dc.date.accessioned | 2020-01-16T07:15:51Z | |
dc.date.available | 2020-01-16T07:15:51Z | |
dc.date.issued | 2018-06 | en_US |
dc.identifier.citation | Corrêa, W. J., and Özsarı, T. (2018). Complex Ginzburg–Landau equations with dynamic boundary conditions. Nonlinear Analysis: Real World Applications, 41, 607-641. doi:10.1016/j.nonrwa.2017.12.001 | en_US |
dc.identifier.issn | 1468-1218 | |
dc.identifier.issn | 1468-1218 | - |
dc.identifier.uri | https://doi.org/10.1016/j.nonrwa.2017.12.001 | |
dc.identifier.uri | https://hdl.handle.net/11147/7588 | |
dc.description.abstract | The initial-dynamic boundary value problem (idbvp) for the complex Ginzburg–Landau equation (CGLE) on bounded domains of RN is studied by converting the given mathematical model into a Wentzell initial–boundary value problem (ibvp). First, the corresponding linear homogeneous idbvp is considered. Secondly, the forced linear idbvp with both interior and boundary forcings is studied. Then, the nonlinear idbvp with Lipschitz nonlinearity in the interior and monotone nonlinearity on the boundary is analyzed. The local well-posedness of the idbvp for the CGLE with power type nonlinearities is obtained via a contraction mapping argument. Global well-posedness for strong solutions is shown. Global existence and uniqueness of weak solutions are proven. Smoothing effect of the corresponding evolution operator is proved. This helps to get better well-posedness results than the known results on idbvp for nonlinear Schrödinger equations (NLS). An interesting result of this paper is proving that solutions of NLS subject to dynamic boundary conditions can be obtained as inviscid limits of the solutions of the CGLE subject to same type of boundary conditions. Finally, long time behavior of solutions is characterized and exponential decay rates are obtained at the energy level by using control theoretic tools. | en_US |
dc.description.sponsorship | TUBITAK (115F055) | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier Ltd. | en_US |
dc.relation.ispartof | Nonlinear Analysis: Real World Applications | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Inviscid limits | en_US |
dc.subject | Dynamic boundary conditions | en_US |
dc.subject | Nonlinear equations | en_US |
dc.subject | Landau equation | en_US |
dc.title | Complex Ginzburg–Landau equations with dynamic boundary conditions | en_US |
dc.type | Article | en_US |
dc.authorid | 0000-0003-4240-5252 | en_US |
dc.institutionauthor | Özsarı, Türker | - |
dc.department | İzmir Institute of Technology. Mathematics | en_US |
dc.identifier.volume | 41 | en_US |
dc.identifier.startpage | 607 | en_US |
dc.identifier.endpage | 641 | en_US |
dc.identifier.wos | WOS:000424721700031 | en_US |
dc.identifier.scopus | 2-s2.0-85038826755 | en_US |
dc.relation.tubitak | info:eu-repo/grantAgreement/TUBITAK/MFAG/115F055 | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.doi | 10.1016/j.nonrwa.2017.12.001 | - |
dc.relation.doi | 10.1016/j.nonrwa.2017.12.001 | en_US |
dc.coverage.doi | 10.1016/j.nonrwa.2017.12.001 | en_US |
dc.identifier.wosquality | Q2 | - |
dc.identifier.scopusquality | Q2 | - |
item.fulltext | With Fulltext | - |
item.grantfulltext | open | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
crisitem.author.dept | 04.02. Department of Mathematics | - |
Appears in Collections: | Mathematics / Matematik Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
1-s2.0-S146812181730189X-main.pdf | Makale (Article) | 920.76 kB | Adobe PDF | View/Open |
CORE Recommender
SCOPUSTM
Citations
6
checked on Nov 15, 2024
WEB OF SCIENCETM
Citations
6
checked on Nov 9, 2024
Page view(s)
1,854
checked on Nov 18, 2024
Download(s)
308
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.