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a b s t r a c t

The initial-dynamic boundary value problem (idbvp) for the complex Ginzburg–
Landau equation (CGLE) on bounded domains of RN is studied by converting the
given mathematical model into a Wentzell initial–boundary value problem (ibvp).
First, the corresponding linear homogeneous idbvp is considered. Secondly, the
forced linear idbvp with both interior and boundary forcings is studied. Then,
the nonlinear idbvp with Lipschitz nonlinearity in the interior and monotone
nonlinearity on the boundary is analyzed. The local well-posedness of the idbvp
for the CGLE with power type nonlinearities is obtained via a contraction mapping
argument. Global well-posedness for strong solutions is shown. Global existence
and uniqueness of weak solutions are proven. Smoothing effect of the corresponding
evolution operator is proved. This helps to get better well-posedness results than the
known results on idbvp for nonlinear Schrödinger equations (NLS). An interesting
result of this paper is proving that solutions of NLS subject to dynamic boundary
conditions can be obtained as inviscid limits of the solutions of the CGLE subject
to same type of boundary conditions. Finally, long time behavior of solutions is
characterized and exponential decay rates are obtained at the energy level by using
control theoretic tools.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

This article is devoted to the analysis of the initial-dynamic boundary value problem (idbvp) for the
complex Ginzburg–Landau equation (CGLE):⎧⎪⎪⎪⎨⎪⎪⎪⎩

ut − (λ + iα)△u + f(u) = 0 in Ω × R+,
∂u

∂ν
= −g(ut) on Γ1 × R+,

u = 0 on Γ0 × R+,
u(0) = u0 in Ω .

(1.1)
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In (1.1), Ω ⊂ RN is a bounded regular domain with boundary Γ , which is the union of Γ0 and Γ1,
two nonempty, non-intersecting, connected (n − 1)-dimensional manifolds. u = u(x, t) is a complex valued
function that denotes the complex oscillation amplitude. f(u) will be defined either as the usual power type
nonlinearity f(u) = (κ+ iβ)|u|p−1

u−γu (Sections 6–10) or as an appropriate Lipschitz function (Section 5).
Here, β ∈ R and α ∈ R are the (nonlinear) frequency and (linear) dispersion parameters, respectively.
Without loss of generality, α can be taken as positive. Therefore we will also assume α > 0 throughout the
text. β can have both signs except when we discuss global solutions with power type nonlinearities, where
it will be assumed to be positive. ∂u

∂ν denotes the unit outward normal derivative. p ≥ 2 is the source power
index. Other parameters satisfy λ, κ > 0, γ ∈ R. g : C → C is a complex valued function which is either taken
as identity (Sections 2–4, 6–10) or as a monotone function (Section 5) satisfying suitable growth conditions
to be specified later in Assumption 2.1.

CGLE is a fundamental model in mathematical physics to describe near-critical instability waves, such as
a reaction diffusion system near a Hopf-bifurcation. Concrete applications of this equation include nonlinear
waves, second-order phase transitions, superconductivity, superfluidity, Bose–Einstein condensation, and
liquid crystals. See [1] and the references therein for an overview of several phenomena described by the
CGLE.

CGLE simultaneously generalizes the nonlinear heat and nonlinear Schrödinger equations (NLS), both
of which can be obtained in the limit as the parameter pairs (α, β) and (λ, κ) tend to zero, respectively.
Therefore, it is natural to expect that CGLE carries some of the characteristics of the nonlinear heat
equation and NLS. The latter two types of equations have been studied to some extent under dynamic
boundary conditions. However, there has been no such progress for the CGLE. Most models assumed ideal
set-ups neglecting possible linear and nonlinear interior–boundary interactions. See for example [2–12],
and [13] for existence and non-existence results on the CGLE in the case of the whole space or domains
with homogeneous or periodic boundary conditions. There are only a few results on the CGLE under
nonhomogeneous boundary conditions [14–18]. The NLS subject to inhomogeneous or nonlinear boundary
conditions, which can be considered a limiting case of the CGLE, took much more attention in recent years;
see for example [19–28], [29–32], and [33].

Recently, [34] studied the defocusing cubic Schrödinger equation with dynamic boundary conditions on a
bounded domain Ω ⊂ RN with smooth boundary for N = 2, 3. The model considered in [34] was the special
case of the problem (1.1) where α = β = 1 and λ = κ = γ = 0. In this work, the authors obtained the
local well-posedness of strong (H2) solutions for N = 2, 3 and global well-posedness of strong solutions for
N = 2. In addition, the existence (without uniqueness) of weak (H1) solutions was obtained for N = 2, 3.
Moreover, it was proven that the energy of the weak solutions satisfies a uniform decay rate estimate under
appropriate monotonicity conditions imposed on the nonlinear term appearing in the dynamic boundary
conditions.

The key idea in [34] is replacing the given dynamic boundary condition with an equivalent boundary
condition, which is obtained by replacing ut on the boundary with the Laplacian and other terms coming
from the main equation. This enables one to obtain the generation of a semigroup in an appropriate topology.
The idea of using a boundary condition which involves the trace of the Laplacian comes from Venttsel’s
work [35]. In his paper, Venttsel was interested in finding the most general boundary condition which
restricts the closure of a given elliptic operator to the infinitesimal generator of a semigroup of positive
contraction operators on the Banach space of continuous functions over a regular compact region [35]. The
result of this work was the discovery of the generalized Venttsel (more commonly “Wentzell”) boundary
condition a∆u + b ∂u

∂ν + cu = 0 on Γ , which provided the desired property for a > 0, b, c ≥ 0.
Physically, this boundary condition can be considered as a (damped) harmonic oscillator acting at each

point on the boundary. In the case of the heat equation, this means that the boundary can act as a heat
source or sink depending on the physical situation. These boundary conditions also arise naturally in the
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study of the wave equation. In particular, generalized Wentzell boundary conditions can be thought of as
a closed subclass of acoustic boundary conditions. The well-posedness of Wentzell problems for the heat
equation was proved on spaces of the form Xp = Lp(Ω) ∪ Lp(Γ ). See for example [36], where the Wentzell
problem is treated as a coupled system of two PDEs: one on the interior and one on the boundary. Regarding
Wentzell boundary conditions, it is also worth mentioning the papers [34,37], and [36–39] on heat and wave
equations.

We are interested in studying three main problems for the CGLE model considered in (1.1): (i) well-
posedness (ii) inviscid limits (iii) long-time behavior. However, there are some challenges:

(i) The method used on the heat equation [36] fails when α ̸= 0.

(ii) The linear version of (1.1) does not generate a semigroup at the L2-level. Since L2(Ω) is not the
natural underlying topology for problem (1.1) for semigroup generation, one cannot directly employ
the monotone operator theory [10] (a common tool to treat CGLE) since the operator B u = |u|p u is
m-accretive only in L2(Ω), but not for example in H1(Ω).

(iii) There is no control of the L2(Ω)-norm of the solution due to the presence of a non-standard boundary
condition. This is a major drawback for treating the nonlinear terms via Gagliardo–Nirenberg type
estimates. Focusing problems become particularly difficult even under smallness assumptions on the
power of the nonlinearities or initial datum.

One can overcome some of the difficulties above by using the method presented in [34]. However, the
additional terms in (1.1) compared to the NLS equation make the analysis more subtle.

The intrinsic regularizing feature of the Ginzburg–Landau operator provides more flexibility from the
point of regularity compared to NLS [34]. Let us mention a few differences between the two studies:

(i) We prove that solutions of the CGLE possess better interior regularity than the solutions of the
NLS. This result verifies the natural smoothing effect of the semigroup generator (see for example
Theorem 2.3, Corollary 2.1, Lemma 7.1, and Theorem 2.7). This latter property is due to the fact that
the parabolic effect in the CGLE is not present in the Schrödinger dynamics.

(ii) In order to prove the local existence of strong solutions we construct a special complete metric space
( Lemma 6.2) whose elements are compatible at time t = 0 with the initial datum u0. We show that
the solution operator maps this complete metric space (actually a suitably chosen closed ball in it)
onto itself in a contractive manner. Due to our construction of this complete metric space, the initial
datum satisfies the necessary compatibility condition at each step of the contraction argument, which
allows us to use the linear non-homogeneous theory.

(iii) Controlling the H1(Ω) norm of the solutions is trivial for the defocusing NLS. In the case of the CGLE,
the energy functional (see (7.1) and (7.2)) involves other terms such as 1

p+1 (ακ + βλ)∥u∥p+1
Lp+1(Γ1),

αλ
∫ t

0 ∥∆u∥2
L2(Ω)ds, and

∫ t

0 ∥u(s)∥2p

L2p(Ω)ds. In order to achieve a similar type of control of the energy
for the solutions of CGLE, we make an assumption on the sign of the frequency parameter.

(iv) The smoothing effect is also utilized here in obtaining global well-posedness results for a wider range
of parameters N and p. The fact that λ > 0 in the CGLE helps us to obtain better control estimates
compared to the case of the nonlinear Schrödinger equation. [34] obtains global well-posedness of strong
solutions only in dimension N = 2 and p = 3. We are able to improve this result in the context of the
CGLE and obtain global well-posedness of strong solutions for p ≥ 2 if N = 1; p ∈ [2, 5] if N = 2; and
p ∈

[
2, 11

3
]

if N = 3.
(v) We show that solutions of the idbvp for NLS can be obtained as inviscid limits of solutions of the

idbvp for CGLE as the parameter pair (λ, κ) → 0. This gives one another approach to study NLS
with dynamic boundary conditions. Inviscid limits and convergence to the NLS for the CGLE at
different topological levels have been previously studied in the case of the whole space, periodic or
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homogeneous boundary conditions (see e.g., [2,40], and [41]). We verify this property at the H1-level
under dynamic boundary conditions. Moreover, we give a rather non-standard regularity in time for
ut when u ∈ L∞(0, T ; V ≡ H1

Γ0
(Ω)) is the weak solution of the idbvp for the NLS. More precisely, we

prove that ut indeed belongs to L2(0, T ; V ′) as opposed to L∞(0, T ; V ′) (the common space for the
classical models).

The rest of the paper is organized as follows:

(i) Section 2 is devoted to the description of notations, assumptions, and statements of the main results.
(ii) In Sections 3 and 4, we discuss the well-posedness of the corresponding linear homogeneous and

nonhomogeneous systems.
(iii) In Section 5, we study the Lipschitz perturbations of the linear equation with monotone boundary

conditions.
(iv) In Section 6, we obtain the local well-posedness of strong solutions for (1.1).
(v) In Section 7, we study the global strong solutions.
(vi) In Section 8, we discuss the existence and uniqueness of weak solutions.
(vii) In Section 9, we prove that solutions of the idbvp for the NLS can be obtained as inviscid limits of the

solutions of the idbvp for the CGLE.
(viii) Finally, in Section 10, we study the long time behavior of solutions and obtain exponential decay rates

by using a special multiplier, which is now a classical tool in the control theory of PDEs.

2. Notation and main results

We consider the space L2(Ω) of complex valued functions on Ω endowed with the inner product

(y, z)L2(Ω) =
∫
Ω

y(x)z(x) dx

and the induced norm

∥y∥2
L2(Ω) = (y, y)L2(Ω).

We also consider the Sobolev space H1(Ω) endowed with the scalar product

(y, z)H1(Ω) = (y, z)L2(Ω) + (∇y, ∇z)L2(Ω).

We will observe later that the natural underlying space for problem (1.1) is

V =
{

u ∈ H1(Ω); u = 0 on Γ0
}

(2.2)

instead of the common L2(Ω). V ′ will denote the dual space of V.

Since Γ0 ̸= ∅, due to Poincaré’s inequality, we can consider the space V endowed with the norm induced
by the scalar product

(y, z)V = (∇ y, ∇ z)L2(Ω), ∀ y, z ∈ V. (2.3)

The norm ∥y∥V ≡ ∥∇y∥L2(Ω) is equivalent to the usual norm of H1(Ω) .

In what follows, we define the operator A as the sum of the Schrödinger and heat operators, that is,

A ≡ (λ + i α)∆ (2.4)
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with the domain given by

D(A) ≡
{

y ∈ V,∆y ∈ V,
∂y

∂ν
= −(λ + i α)∆y on Γ1

}
. (2.5)

In the above definition, ∆|Γ1 should be interpreted as the restriction of the Laplacian from the interior to
the boundary, which is well-defined according to the Sobolev trace theory since ∆y ∈ V for y ∈ D(A).

We first study the linear idbvp corresponding to (1.1) with g ≡ id:⎧⎪⎪⎪⎨⎪⎪⎪⎩
ut = (λ + i α)∆u in Ω × (0, ∞),
u = 0 on Γ0 × (0, ∞),
∂u

∂ν
= −ut on Γ1 × (0, ∞),

u(0) = u0 in Ω .

(2.6)

The operator A given in (2.4) recasts the idbvp (2.6) as the following Wentzell initial–boundary value
problem (ibvp): ⎧⎪⎪⎪⎨⎪⎪⎪⎩

ut = (λ + i α)∆u in Ω × (0, ∞),
u = 0 on Γ0 × (0, ∞),
∂u

∂ν
= −(λ + i α)∆u on Γ1 × (0, ∞),

u(0) = u0 in Ω .

(2.7)

In abstract operator theoretic form, we can rewrite (2.7) alternatively as

u̇ = Au, u(0) = u0.

Using the above reformulation of problem (2.6), we are able to prove the following well-posedness result.

Theorem 2.1 (Linear Homogeneous Problem I). The operator (A, D(A)) generates a strongly continuous
semigroup of contractions on V .

Going back to the idbvp (2.6), one can restate the above theorem as follows.

Theorem 2.2 (Linear Homogeneous Problem II). Let u0 ∈ V . Then there exists a unique solution
u ∈ C([0, ∞); V ) to problem (2.6).

In order to deal with the nonlinear problem (1.1), we first study the following non-homogeneous model:⎧⎪⎪⎪⎨⎪⎪⎪⎩
ut − (λ + i α)∆u = f in Ω × (0, ∞),
u = 0 on Γ0 × (0, ∞),
∂u

∂ν
= −ut on Γ1 × (0, ∞),

u(0) = u0 in Ω .

(2.8)

The above idbvp, as in the linear homogeneous case, can be treated as a Wentzell ibvp. Indeed, it is considered
as a special case of the more general Wentzell problem below:⎧⎪⎪⎪⎨⎪⎪⎪⎩

ut − (λ + i α)∆u = f in Ω × (0, ∞),
u = 0 on Γ0 × (0, ∞),
∂u

∂ν
= −(λ + i α)∆u + g on Γ1 × (0, ∞)

u(0) = u0 in Ω

(2.9)

with a given internal forcing term f and boundary input g.

We prove the following result for problem (2.9).
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Theorem 2.3 (Linear Nonhomogeneous Problem I). Let f ∈ L1(0, ∞; V ) and g ∈ L2(0, ∞; L2(Γ1)). Then
for each u0 ∈ V there exists a unique solution u ∈ C([0, ∞); V ) to (2.9). Moreover, ∆u ∈ L2(0, ∞; L2(Ω))
and the following “hidden” trace regularity holds true:

∂u

∂ν
∈ L2(0, ∞, L2(Γ1)).

The Wentzell ibvp in (2.9) can be formally identified with the non-homogeneous idbvp (2.8) with the
special choice g ≡ −f |Γ1 .

Corollary 2.1 (Linear Nonhomogeneous Problem II). Let f ∈ L2(0, ∞; V ). Then for each u0 ∈ V there
exists a unique solution u ∈ C([0, ∞); V ) to (2.8). Moreover, ut|Γ1 ∈ L2(0, ∞; L2(Γ1)), ut ∈ L2(0, ∞; L2(Ω))
and u ∈ L2(0, ∞; H2(Ω)).

Remark 2.1. Due to the smoothing component of the operator A given in (2.4), the solution obtained
here carries more regularity than the solution obtained in the case of the Schrödinger equation (compare
Theorem 2.3 and Corollary 2.1 with [34, Theorem 1.4 and Corollary 1.5]).

We can extend the linear theory to include Lipschitz perturbations (both on the interior and on the
boundary) and nonlinear dynamic boundary feedback.⎧⎪⎪⎪⎨⎪⎪⎪⎩

ut = (λ + i α)∆u + f(u) in Ω × (0, ∞),
u = 0 on Γ0 × (0, ∞),
∂u

∂ν
= −g(ut) on Γ0 × (0, ∞),

u(0) = u0 in Ω .

(2.10)

Here, g(z) is assumed to satisfy the following conditions:

Assumption 2.1. Assume that g(z) is a continuous function on C such that both g(z) and its inverse
g−1(z) satisfy:

(i) Re[(g(z) − g(v))(z̄ − v̄)] ≥ m|z − v|2,
(ii) Im(g(z)z̄) = 0,
(iii) |g(z)| ≤ M |z|

for all v, z ∈ C and for some constants m, M ∈ R+.

Examples of functions satisfying Assumption 2.1 can be found in the literature for wave and Schrödinger
equations (see for example [42]). In particular, assumptions (i) and (iii) form a complex analog to the
assumption of monotonicity that appears in the study of wave equations.

When we consider the model in (2.10), we will assume f : V → V to be Lipschitz continuous in the sense
that there exists a constant L such that for every pair u, v ∈ V ,

∥f(u) − f(v)∥V ≤ L∥u − v∥V . (2.11)

Now, the well-posedness of (2.10) is achieved by considering a more general Wentzell ibvp. Namely, we
replace g(ut) on the boundary with g((λ + i α)∆u + h(u) + γ u), where we assume h : H1(Ω) → L2(Γ1) is
Lipschitz in the sense

∥h(u) − h(v)∥H1/2(Γ1) ≤ K∥u − v∥V (2.12)

for some K > 0.
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Since the trace operator γ0 : H1(Ω) → L2(Γ ) is continuous and linear, this formulation actually
generalizes problem (2.10), which is the special case where h(u) = γ0(f(y)). In order to recast the problem
in an abstract operator theoretic form, we define the operator Af given by

Af u = (λ + i α)∆u + f(u), (2.13)

with the domain

D(Af ) =
{

y ∈ V,∆y ∈ V,
∂y

∂ν
= −g((λ + i α)∆|Γ1y + h(y)) on Γ1

}
(2.14)

where g satisfies Assumption 2.1, and f and h satisfy (2.11) and (2.12), respectively. One should notice that
if f satisfies (2.11), then h ≡ γ0f satisfies (2.12) by the Sobolev trace inequality.

The following well-posedness fact holds true.

Theorem 2.4 (Nonlinear Perturbations I). Taking into account Assumption 2.1 , (2.11) and (2.12), the
operator (Af , D(Af )) generates a strongly continuous semigroup on V.

Going back to the idbvp (2.10), one obtains:

Corollary 2.2 (Nonlinear Perturbations II). Under the same assumptions in Theorem 2.4, for any initial
data u0 ∈ V there exists a unique solution u ∈ C([0, ∞), V ) of the problem (2.10).

Finally, we study the problem (1.1) with g ≡ id, that is,⎧⎪⎪⎪⎨⎪⎪⎪⎩
ut − (λ + iα)△u + (κ + iβ)|u|p−1

u − γu = 0 in Ω × R+,
∂u

∂ν
= −ut on Γ1 × R+,

u = 0 on Γ0 × R+,
u(0) = u0 in Ω .

(2.15)

In order to achieve our goal, we resort to the inhomogeneous linear theory with a forcing term given by
F (u) = −(κ + i β)|u|p−1

u + γ u. Using a contraction mapping argument and some a priori estimates, we
prove the following local well-posedness result:

Theorem 2.5 (Local Strong Solutions). Let N ≤ 3 and β > 0. Then, for every bounded subset B ⊂ X0,
there exists T > 0 such that for all (u0, w0) ∈ B, there exists a unique solution u of (2.15) with time
derivative ut = w such that the pair (u, w) ∈ XT .

Spaces X0 and XT are defined in Section 6. Given the association w = ut, we can rephrase (u, w) ∈ XT

as

u ∈ C
(
[0, T ]; H2(Ω) ∩ V

)
∩ C1([0, T ]; V ). (2.16)

Regarding the global well-posedness, we have the following result:

Theorem 2.6 (Global Strong Solutions). Let (u, ut) ∈ XT be a local strong solution as in Theorem 2.5 and
β > 0. Then, this solution can be extended globally under the conditions: p ≥ 2 if N = 1; p ∈ [2, 5] if N = 2;
and p ∈

[
2, 11

3
]

if N = 3.
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Relaxing the smoothness assumption on u0 a little bit, one can get solutions continuous in time at the
H1-level. We first define the notion of weak solutions as follows.

Definition 2.1 (Notion of Weak Solutions). We say that u is a weak solution of problem (2.15) if given
T > 0 and

u0 ∈ Q ≡ {φ ∈ V such that γ0φ ∈ Lp+1(Γ1)},

u|t=0 = u0 and there exists a sequence of global strong solutions uµ with initial data uµ,0 such that uµ,0 → u0

in Q and uµ → u in C([0, T ], V ) ∩ L2(0, T ; H2(Ω)), u′
µ → u′ in L2(0, T ; L2(Ω)), and γ0u′

µ → γ0u′ in
L2(0, T ; L2(Γ1)).

Our next result is the following theorem on the existence and uniqueness of weak solutions:

Theorem 2.7 (Weak Solutions). Let N ≤ 3, β > 0, u0 ∈ V so that γ0u0 ∈ Lp+1(Γ1) and (p, N) satisfy
the conditions given in Theorem 2.6. Then, problem (2.15) possesses a unique (weak) solution in the sense
of Definition 2.1.

Remark 2.2. Theorem 2.7 gives a more regular weak solution than that obtained in the corresponding
Schrödinger problem in [34], where the weak solution only satisfies u ∈ L∞(0, T ; V ) with u′ ∈ L2(0, T ; V ′).
Moreover, the uniqueness in NLS is proved only in the case that the nonlinearity is globally Lipschitz in V ,
whereas for the CGLE, uniqueness is proved in a more general setting, thanks to the smoothing effect of the
parabolic component of the Ginzburg–Landau operator.

At this point, a natural question is to ask whether the solutions of the CGLE with dynamic boundary
conditions get close to the solutions of NLS with same type of boundary conditions as the parameter pair
ϵ ≡ (λ, κ) → 0. We show that this is indeed true by the following theorems.

Theorem 2.8 (Inviscid Limits I). Suppose that uϵ, where ϵ = (λ, κ), is a global (weak) solution to the idbvp
for the CGLE with the initial condition u0 ∈ Q as in Theorem 2.7. Then, there exists u ∈ L∞(0, T ; V ) with
ut ∈ L2(0, T ; V ′) such that a subsequence of uϵ (still denoted same) satisfies

uϵ ⇀ u weakly star in L∞(0, T ; V ) , (2.17)

∂tuϵ ⇀ ut weakly in L2(0, T ; V ′) (2.18)

as ϵ → 0, and most importantly u solves the idbvp for the NLS in the weak sense.

Theorem 2.9 (Inviscid Limits II). Let N = 2 and p = 3. Suppose that uϵ is a global strong solution of the
idbvp for the CGLE with the initial condition u0

ϵ and u is a global strong solution of the idbvp for the NLS
with initial condition u0 such that u0

ϵ → u0 in V as ϵ = (λ, κ) → 0. Then,

∥uϵ − u∥V = O(λ) + O(κ)

as ϵ = (λ, κ) → 0.

Finally, we prove that the solutions of the idbvp for the CGLE decay to zero exponentially fast if γ ≤ 0.
This is easy to prove with γ < 0, and we have the following theorem.
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Theorem 2.10 (Stabilization I). Let

u0 ∈ Q ≡ {φ ∈ V ∩ Lp+1(Ω) such that γ0φ ∈ Lp+1(Γ1)}

and u be the corresponding global weak solution of the idbvp for the CGLE (Eq. (2.15)) with γ < 0 as in
Theorem 2.7. Then,

F (t) ≤ E0e−|γ|t for t ≥ 0,

where

F (t) ≡ α

2 ∥∇u(t)∥2
L2(Ω) + β

p + 1∥u(t)∥p+1
Lp+1(Ω) (2.19)

and

E0 ≡ α

2 ∥∇u0∥2
L2(Ω) + β

p + 1∥u0∥p+1
Lp+1(Ω) − αγ

2 ∥u0∥2
L2(Γ1) (2.20)

+ 1
p + 1(ακ + βλ)∥u0∥p+1

Lp+1(Γ1).

Remark 2.3. The problem γ = 0 is more challenging and requires control theoretic tools. In the case
γ = 0, there is usually no decay for the complex Ginzburg–Landau equation even at L2-level. However, in
our model the dynamic boundary input plays the role of a stabilizing control/feedback and one actually
gains an exponential decay of solutions. In fact, we have the following theorem.

Theorem 2.11 (Stabilization II). Let

u0 ∈ Q ≡ {φ ∈ V ∩ Lp+1(Ω) such that γ0φ ∈ Lp+1(Γ1)}

and u be the corresponding global weak solution of the idbvp for the CGLE (Eq. (2.15)) with γ = 0 as in
Theorem 2.7. Moreover, suppose that Ω satisfies the following geometric condition: ∃x0 ∈ RN such that
(x − x0) · ν ≤ 0 on Γ0 and (x − x0) · ν > 0 on Γ1. Then, there exists some C > 0 such that

F (t) ≤ F (0)e1− t
C for t ≥ 0

where F (t) is given in (2.19).

3. Linear homogeneous problem

In this section, our aim is to prove Theorems 2.1 and 2.2. The proof of these results is based on a method
developed in [34] adapted for the idbvp (2.6). In order to achieve this, we convert the idbvp (2.6) into the
Wentzell ibvp in (2.7). This is accomplished by a suitable use of semigroup proving that the operator A is
maximal dissipative.
Dissipativity:

Proof of the dissipativity is standard with exception of the computations that shows the presence of the
boundary condition on Γ1 . First of all, we observe that the operator A is not dissipative on space L2(Ω).
Indeed, from the definition of the operator A given in (2.4), taking into account that ∂u

∂ν = −(λ + i α)∆u

on Γ1 (see (2.7)), we have

Re(Au, u)L2(Ω) = −λ∥∇u∥2
L2(Ω) − Re[(λ + i α)2 (∆u, u)L2(Γ1)], ∀ u ∈ D(A), (3.1)

which it is not clear from the above inequality that Re(Au, u)L2(Ω) ≤ 0.
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So, performing the scalar product of the space V instead L2(Ω), for any u ∈ D(A), we obtain

(Au, u)V = (∇Au, ∇u)L2(Ω)

= (λ + i α)(∇∆u, ∇u)L2(Ω)

= −(λ + i α)(∆u,∆u)L2(Ω) + (λ + i α)
(
∆u,

∂u

∂ν

)
L2(Γ1)

= −(λ + i α)∥∆u∥2
L2(Ω) −

∂u

∂ν

2

L2(Γ1)
,

(3.2)

where in the last equality we used the fact that ∂u
∂ν = −(λ + i α)∆u on the boundaryΓ1. Taking the real

parts in (3.2), we obtain the desired, that is,

Re(Au, u)V = −λ ∥∆u∥2
L2(Ω) −

∂u

∂ν

2

L2(Γ1)
≤ 0. (3.3)

Maximality:
For this purpose, as well as proceeded in [34]. We define the following Banach space (see

[34, Lemma 2.1]):

Z =
{

z ∈ V,∆z ∈ L2(Ω), ∂z

∂ν
∈ L2(Γ1)

}
, (3.4)

which is equipped with the norm

∥z∥2
Z = ∥z∥2

V + ∥∆z∥2
L2(Ω) +

∂z

∂ν

2

L2(Γ1)
. (3.5)

Now, recalling the definition of A and integrating by parts, let us define the following bilinear form

a(u, z) ≡ (λ + iα)(∆u,∆z)L2(Ω) +
(

∂u

∂ν
,

∂z

∂ν

)
L2(Γ1)

+ θ(∇u, ∇z)L2(Ω) . (3.6)

We desire guarantee that the identity

a(u, z) = (−Au + θ u, z)V (3.7)

will hold true whenever u ∈ D(A) and z ∈ V , where θ will be chosen later. To this end, we employ the
Browder–Minty theorem [43, Theorem 5.16] to show that for any fixed f ∈ V , there exists a unique (weak)
solution u ∈ V satisfying the following variational form

a(u, z) = (−f, z)V , ∀ z ∈ V . (3.8)

The next step is to prove that a(u, z) is continuous and coercive on Z. We are able to prove that

|a(u, z)| ≤ C(α, λ, θ)∥u∥Z∥z∥Z ,

|a(u, u)|2 ≥ C(α, γ, λ, θ) ∥u∥2
Z , considering Re(θ) > 0.

These computations can be done as in [34], therefore omitted here.
So, Browder–Minty theorem says us that for all f ∈ Z ′, there exists a solution v ∈ Z satisfying (3.8).

Moreover, from the chain D(A) ⊂ Z ⊂ V ⊂ Z ′, we conclude that for all f ∈ V there is a solution v ∈ Z ⊂ V .
Beyond that, by testing the variational form with z ∈ Z satisfying ∂z

∂ν = 0, it follows that

(λ + iα)(∆v,∆z)L2(Ω) − θ(v,∆z)L2(Ω) = (f,∆z)L2(Ω),
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then,

(λ + i α)∆v − θv = f.

Since v, f ∈ V , it follows that ∆v ∈ V . Using the variational form once more, one recovers the boundary
condition so that v ∈ D(A). This tells us that the operator A is the infinitesimal generator of a C0 semigroup
of contractions on V.

The fact that ∆v ∈ V implies that ∆v|Γ1 ∈ H1/2(Γ1), that is, ∂v
∂ν ∈ H1/2(Γ1). Trace theory says us that

v ∈ H2(Ω) which we can conclude that the regularity of D(A) is at least at the level of H2(Ω). Since D(A)
is dense in V , from the Lumer–Philips theorem or [44, Corollary IV.3.2,], Theorem 2.1 follows. Translating
the Wentzell ibvp (2.7) back into the idbvp (2.6), the proof Theorem 2.2 is completed.

4. Linear nonhomogeneous problem

In this section, our aim is to prove Theorem 2.3 and Corollary 2.1. Again, we borrowed the ideas used
in [34]. Now, we consider the problem (2.8). First of all, according to [44, Theorem IV.4.1A], we can deduce
the following result:

Proposition 4.1. If f ∈ L1(0, ∞; V ) and u0 ∈ D(A) = V , there exists a unique generalized solution
u ∈ C([0, ∞); V ) to the problem (2.8).

Now, we want to consider the general Wentzell ibvp in (2.9). Let us first consider the case f = 0 and then
employ the superposition principle to obtain the well-posedness of (2.9). First, we define the Neumann map
N below where for a given g ∈ Hs(Γ1), N g solves⎧⎪⎪⎨⎪⎪⎩

∆N g = 0
∂N g

∂ν
= g on Γ1

N g = 0 on Γ0.

(4.1)

Using the elliptic theory [45], one can deduce

N : Hs(Γ1) → Hs+3/2(Ω) is continuous for all s ∈ R. (4.2)

From above, define ũ = u − N g. Making use of the boundary condition on Γ1 given in (2.9) and the
conditions ∆N g = 0 and ∂N g

∂ν = g on Γ1, it follows that

∂ũ

∂ν
=∂u

∂ν
− ∂N g

∂ν
= − (λ + i α)∆u + (λ + i α) ∆N g  

=0

= − (λ + i α)∆ũ on Γ1.

(4.3)

Moreover, since we are considering the case f = 0, we see that

ũt = (λ + i α)∆u − N gt

and making use of the fact that ∆N g = 0, we have

ũt = (λ + i α)∆ũ − N gt. (4.4)
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Combining (4.3) and (4.4), the problem with respect to the function ũ becomes:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ũt = (λ + i α)∆ũ − N gt in Ω × (0, ∞)
ũ = 0 on Γ0 × (0, ∞)
∂ũ

∂ν
= −(λ + i α)∆ũ on Γ1 × (0, ∞)

ũ(0) = u0 − N g(0).

(4.5)

The above problem gives us the following result whose proof can be done as in [[34], Lemma 2.3]:

Lemma 4.1. If g ∈ W 1,1(0, ∞; H−1/2(Γ1)), then there exists a unique solution u ∈ C([0, ∞); V ) to the
problem (2.9).

Below we will prove Theorem 2.3. This result requires only g ∈ L2(0, T ; L2(Γ1)). Indeed, Lemma 4.1
tells us that there exists a unique solution u ∈ C([0, T ]; V ) to the problem (2.9) whenever g ∈
W 1,1(0, T ; H−1/2(Γ1)). So it is sufficient to prove that supt∈[0,T ]∥u(t)∥V < ∞ for g ∈ L2(0, T ; L2(Γ1))
and then use a density argument.

Multiplying (2.9) by ū in V , taking the inner product, and integrating in temporal variable t, it follows
that ∫ t

0
(ut(s), u(s))V ds −

∫ t

0
((λ + i α)∆u(s), u(s))V ds =

∫ t

0
(f(s), u)V ds. (4.6)

Without loss of generality, we take f = 0. The general case f ̸= 0 can be solved a posteriori via superposition.
We observe that the first term satisfies

Re
∫ t

0
(ut(s), u(s))V ds = 1

2

∫ t

0

d

dt
∥u(s)∥2

V ds = 1
2∥u(t)∥2

V − 1
2∥u(0)∥2

V . (4.7)

Using integration by parts on the second term at the left hand side of (4.6) we get∫ t

0
((λ + i α)∆u(s), u(s))V ds

=
∫ t

0

[
−(λ + i α)∥∆u(s)∥2

L2(Ω) + (λ + i α)
(
∆u(s), ∂u

∂ν
(s)
)

L2(Γ1)

]
ds.

(4.8)

Now, substituting the boundary condition on Γ1, namely, (λ + i α)∆u = g − ∂u
∂ν we obtain∫ t

0

(
(λ + i α)∆u(s), ∂u

∂ν
(s)
)

L2(Γ1)
ds

=
∫ t

0

[
−
∂u

∂ν
(s)
2

L2(Γ1)
+
(

g,
∂u

∂ν
(s)
)

L2(Γ1)

]
ds.

(4.9)

Substituting (4.7)–(4.9) in (4.6) and taking the real parts, we get:

0 = 1
2∥u(t)∥2

V − 1
2∥u(0)∥2

V + λ

∫ t

0
∥∆u(s)∥2

L2(Ω) ds +
∫ t

0

∂u

∂ν
(s)
2

L2(Γ1)
ds

− Re
∫ t

0

(
g,

∂u

∂ν
(s)
)

L2(Γ1)
ds.

(4.10)

We infer that
1
2∥u(t)∥2

V + λ

∫ t

0
∥∆u(s)∥2

L2(Ω) ds +
(

1 − 1
4 η

)∫ t

0

∂u

∂ν
(s)
2

L2(Γ1)
ds

≤ 1
2∥u(0)∥2

V + η

∫ t

0
∥g∥2

L2(Γ1) ds

(4.11)

where we choose η > 1
4 .
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More generally, for f ∈ L1(0, T ; V ), we observe

1
4∥u(t)∥2

V + λ

∫ t

0
∥∆u(s)∥2

L2(Ω) ds +
(

1 − 1
4 η

)∫ t

0

∂u

∂ν
(s)
2

L2(Γ1)
ds

≤ 1
2∥u(0)∥2

V + η

∫ t

0
∥g∥2

L2(Γ1) ds +
∫ t

0
∥f∥2

V ds

≤ C(u0, f, g).

(4.12)

By making the identification g = f |Γ1 , we can identify (2.9) with the idbvp (2.8). Note that if
f ∈ L2(0, T ; V ), by trace theory g ∈ L2(0, T ; H1/2(Γ1)). Moreover, since ∆u ∈ L2(0, T ; L2(Ω)) and
f ∈ L2(0, T ; V ), we have that ut ∈ L2(0, T ; L2(Ω)), and this concludes the proof of Corollary 2.1.

Remark 4.1.

(i) Given u ∈ H1(Ω), recalling the trace theory, one gets that ∂u
∂ν ∈ H−1/2(Γ ). Therefore, the additional

regularity ∂u
∂ν ∈ L2(Γ1), which shows up in Theorem 2.3, is a “hidden” regularity due to the underlying

Wentzell structure.
(ii) Again, just by a formal argument, one would expect ∆u ∈ H−1(Ω). The fact that ∆u ∈ L2(Ω),

is a result of the smoothing effect due to the intrinsic properties of the parabolic component of the
Ginzburg–Landau operator.

(iii) From Corollary 2.1, we also conclude that the map

(f, u0) ↦−→ u (4.13)

is bounded from L2(0, ∞, V ) × V into C([0, ∞); V ).

Next, we desire to obtain a Duhamel’s formula for a problem derived from (2.9) and an estimate for ut.

The next two results, namely, Lemma 4.2 and Theorem 4.1 can be obtained employing similar ideas used in
[[34], Lemma 2.7 and Theorem 2.8], therefore their respective proofs will be omitted here.

Lemma 4.2. Let u0, f and g satisfy

(i) u0 ∈ V (ii)f ∈ L1(0, T ; V )
(iii) g ∈ L2(0, T ; L2(Γ1)).

Then, the solution u ∈ C([0, T ]; V ) of (2.9) can be represented by

u(t) = eAtu0 − A

∫ t

0
eA(t−s)N g(s)ds +

∫ t

0
eA(t−s)f(s)ds. (4.14)

Remark 4.2. Combining Lemma 4.2 and Theorem 2.3, we deduce that the following map is continuous:

L : L2(0, T ; L2(Γ1)) → C([0, T ]; V )

g ↦→ A

∫ t

0
eA(t−s)N g(s)ds.

(4.15)

Below, we will be looking at more regular solutions corresponding to the inhomogeneous problem (2.9).
We start our discussion with the following result:

Theorem 4.1. In addition to the assumptions in Lemma 4.2 assume also that:

(i) ft ∈ L1(0, T ; V ) (iii) ∆u0 ∈ V and ∂ u0

∂ ν
− g(0) = −(λ + i α)∆u0

(ii) gt ∈ L2(0, T ; L2(Γ1)).
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Then, the following estimate is satisfied:

∥ut∥C([0,T ];V ) ≤ C
[
∥f∥W 1,1(0,T ;V ) + ∥g∥H1(0,T ;L2(Γ1)) + ∥∆u0∥V + ∥u0∥V

]
. (4.16)

If, in addition, g ∈ C([0, T ]; H1/2(Γ1)), then u ∈ C([0, T ]; H2(Ω)).

Remark 4.3. The proof of Theorem 4.1 brings us useful informations (for more details of these facts,
see [34]) that will be employed later, namely:

(i) We notice that the conditions imposed on the initial data are equivalent to saying that u0 − N g(0) ∈
D(A). Indeed, this follows from noticing that u0−N g(0) ∈ D(A) translates into the following conditions:⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂ (u0 − N g(0))
∂ ν

= −(λ + i α)∆(u0 − N g(0))

⇒ ∂ u0

∂ ν
− g(0) = −(λ + i α)∆u0

∆(u0 − N g(0)) ≡ ∆u0 ∈ V.

(4.17)

So, thanks to the compatibility condition described in (4.17), and due to [46, Theorem 2.4(c)], we have

A eAt[u0 − N g(0)] = eAt A[u0 − N g(0)] = (λ + i α)eAt ∆u0. (4.18)

(ii) Making use of the semigroup formula given in Lemma 4.2, we infer:

ut(t) = AeAt[u0 − N g(0)] + eAtf(0) +
∫ t

0
eA(t−s)ft(s)ds − Lgt(t), (4.19)

where L is the map given in (4.15).

Remark 4.4. The function u obtained above in the class C([0, ∞); H2(Ω)) is a solution to the problem
(2.9), that is, ⎧⎨⎩(λ + i α)∆u = ut + f in Ω × [0, T ]

∂ u

∂ ν
= −(λ + i α)∆u + g on Γ1 × [0, T ]

(4.20)

so that f ∈ V ↪→ L2(Ω) and g ∈ H1/2(Γ1). So, denoting C = C(α, λ, T ), from the continuity of the trace
map γ0 : H1(Ω) → H1/2(Γ1) and (4.20), we obtain:

∥u(t)∥H2(Ω) ≤ C
(

∥ut∥L2(Ω) + ∥f∥L2(Ω) + ∥g∥H1/2(Γ1) + |λ + i α| ∥∆u∥H1/2(Γ1)

)
≤ C

(
∥ut∥V + ∥f∥V + ∥g∥H1/2(Γ1) + ∥∆u∥V

)
≤ C

(
∥ut∥V + ∥f∥V + ∥g∥H1/2(Γ1)

)
.

(4.21)

Combining Lemma 4.2, (4.16) and (4.21), we get

∥ut∥C([0,T ];V ) + ∥u∥C([0,T ];H2(Ω)) ≤ C[∥f∥H1(0,T ;V ) + ∥g∥H1(0,T ;H1/2(Γ1))

+ ∥∆u0∥V + ∥u0∥V ]. (4.22)

The above estimate applied to idbvp yields the following:

Theorem 4.2. With reference to (2.8), in addition to the assumptions in Corollary 2.1 assume also
that:
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(i) f ∈ H1(0, T ; V )
(ii) ∆u0 ∈ V and ∂ u0

∂ ν − f |Γ1(0) = −(λ + α i)∆u0.

Then ut ∈ C([0, T ], V ) with appropriate control of the estimates, that is,

∥ut∥C([0,T ];V ) + ∥u∥C([0,T ];H2(Ω)) ≤ C[∥f∥H1(0,T ;V ) + ∥∆u0∥V + ∥u0∥V ].

Proof. The proof can be done as in Theorem 2.9 in [34], therefore, omitted here. □

5. Nonlinear perturbations

Our aim in this section is to prove Theorem 2.4 and Corollary 2.2. We will construct solutions for the
nonlinear model (2.10), where g(z) satisfies the conditions given in Assumption 2.1. Moreover, the function
f is assumed to satisfy (2.11). As in previous sections, the well-posedness is obtained by converting this
idbvp into a Wentzell ibvp. Namely, we replace g(ut) on the boundary with g((λ+ i α)∆u+h(u)), where the
function h satisfies (2.12). Here, we consider the operator Af given in (2.13) with its domain characterized
by (2.14). The proof of theorem (2.14) is based on an extended monotonicity method developed in the linear
case. From the outset, we note that this proof is strongly patterned along Section 3 in [34] and therefore,
we present the details necessary regarding the ibvp.

From above, we are able to prove the ω-maximal dissipativity of the operator Af :
Dissipativity: From definition of the operator Af given in (2.13), we infer

Re(Af u − Af v, u − v)V ≤ −λ ∥∆u − ∆v∥2
L2(Ω) +

(
1

4 η
− m

)∂u

∂ν
− ∂v

∂ν

2

L2(Γ1)

+ [ηK2 + L]∥u − v∥2
V .

(5.1)

Now, since λ > 0, by taking ω > ηK2 + L with η large enough, we may conclude that

Re(Af u − Af v − ωI(u − v), u − v)V ≤ 0, (5.2)

which proves that the operator A is ω-dissipative.
Maximality:

At this point, we consider the space Z given in (3.4). Now, we define

a(u, v) = θ (u, v)V + (λ + i α)(∆u,∆v)L2(Ω) +
(

g−1
(

∂u

∂ν

)
,

∂v

∂ν

)
L2(Γ1)

(5.3)

− (f(u), v)V +
(

h(u), ∂v

∂ν

)
L2(Γ1)

.

We borrow the procedure employed in [34] to show that this form is continuous and coercive so that the
Browder–Minty theorem can be applied. This will imply that, for every j ∈ V ⊂ Z ′, there exists a unique
u ∈ Z satisfying

a(u, v) = (−j, v)V for all v ∈ Z,

for some value of θ such that Re(θ) is sufficiently large.
Regarding the continuity, it can be proved that there exists a bound C(λ, θ, α, M, L, K) such that

|a(u, v)| ≤ C(λ, θ, α, M, L, K)∥u∥Z∥v∥Z . (5.4)
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For coercivity, we get the following estimate:

|a(u, u)| ≥
√

2
2 Re(θ)∥u∥2

V +
√

2
2 (λ + α) ∥∆u∥2

L2(Ω) +
(√

2 m

2 − 1
4 η

)∂u

∂ν

2

L2(Γ1)

−
√

2
[
L + η K2] ∥u∥2

V

=
√

2
2
[
Re(θ) − 2L − 2η K2] ∥u∥2

V + (λ + α)∥∆u∥2
L2(Ω) +

(√
2 m

2 − 1
4 η

)∂u

∂ν

2

L2(Γ1)

≥ C∥u∥2
Z

(5.5)

for some constant C > 0 as long as Re(θ) > 2L + 2η K2 and η is large enough.
So, recalling the Browder–Minty Theorem, if ω > 2L + 2ηK2, the operator Af − ωI will be maximal

dissipative. From this fact, by the Lumer–Philips theorem, the operator Af generates a strongly continuous
semigroup, and therefore Theorem 2.4 and Corollary 2.2 are proved.

6. Local well-posedness of strong solutions

The main goal of this section is to prove the local existence of solutions (Theorem 2.5) for the problem
(2.15) at H2-level for N ≤ 3. We have proved that the linear model with a forcing function f : Ω×(0, T ) → V

given in (2.9) is well-posed in V with appropriate control estimates of the solution map given in Theorem 4.2.
We set

F (u) = −(κ + i β)|u|p−1
u + γ u . (6.1)

To acquire the estimates given in Theorem 4.2, we differentiate equation (2.15) in time in the distributional
sense. In fact, let w = ut, then ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

wt − (λ + iα)∆w = Ft(u, w) in Ω ,
w = 0 on Γ0,
∂w

∂ν
+ wt = 0 on Γ1,

w(0) = w0 in Ω ,

(6.2)

where

Ft(u, w) ≡ −(κ + iβ)
{

(p + 1)
2 |u|p−1

w + (p − 1)
2 |u|p−3

u2w̄

}
+ γ w,

w0 ≡ (λ + iα)∆u0 − (κ + iβ)|u0|p−1
u0 + γ u0. (6.3)

We will be looking at a (desirably unique) fixed point of the map

K : C(0, T ; H2(Ω) ∩ V × V ) → C(0, T ; H2(Ω) ∩ V × V ),

defined by

K(u⋆, w⋆) = (u, w),

where u satisfies (2.15) with F (u⋆) and w satisfies (6.2) with Ft(u⋆, w⋆). Once such a fixed point is found,
it is routine to show that u and ut are strong solutions to (2.15).

In order to establish the existence of a suitable fixed point we need a priori estimates. We begin with
some preliminary nonlinear estimates which will be useful both for local and global theory.
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Lemma 6.1. Let F (u) and Ft(u, w) be given by (6.1) and (6.3), respectively. Given u ∈ H2(Ω) ∩ V and
w ∈ V ,

(i) if N ≤ 3 and p ≥ 1, then

∥F (u)∥H1(Ω) ≤ C(∥u∥p−1
L∞(Ω) + 1)∥u∥H1(Ω) ≤ C(∥u∥p−1

H2(Ω) + 1)∥u∥H1(Ω); (6.4)

(ii) if N ≤ 3 and p ≥ 2, then

∥F (u)∥H2(Ω) ≤ (C∥u∥p−1
L∞(Ω) + 1)∥u∥H2(Ω) ≤ (C∥u∥p−1

H2(Ω) + 1)∥u∥H2(Ω); (6.5)

(iii) if N ≤ 3 and p ≥ 2, then

∥Ft(u, w)∥V ≤ C ∥∇ w∥L2(Ω)

{
∥u∥p−1

H2(Ω) + 1
}

; (6.6)

(iv) if N = 1 and p ≥ 2, then

∥Ft(u, w)∥V ≤ C∥w∥V

(
1 + ∥u∥p−1

V

)
; (6.7)

(v) if N = 2 and p ≥ 2, then

∥Ft(u, w)∥V ≤ C∥w∥V

(
∥u∥θ+ p−2

2
H2(Ω) ∥u∥1−θ

V ∥u∥
p−2

2
2 +∥u∥

p−1
2

H2(Ω)∥u∥
p−1

2
2 + 1

)
, (6.8)

where 1 > θ > 0 can be chosen small. Moreover, for p ∈ [2, 5] and small θ, one has

∥Ft(u, w)∥V ≤ C∥w∥V

(
∥u∥2

H2(Ω) + ∥u∥τ
V + 1

)
(6.9)

where τ = τ(p, θ) > 0;
(vi) if N = 3 and p ≥ 2, then

∥Ft(u, w)∥V ≤ C∥ w∥V

(
∥u∥θ+ 3(p−2)

4
H2(Ω) ∥u∥1−θ

V ∥u∥
p−2

4
2 +∥u∥

3(p−1)
4

H2(Ω) ∥u∥
p−1

4
2 + 1

)
, (6.10)

where 1 > θ > 0 can be chosen small. Moreover, for p ∈
[
2, 11

3
]

and small θ, one has

∥Ft(u, w)∥V ≤ C∥w∥V

(
∥u∥2

H2(Ω) + ∥u∥τ
V + 1

)
(6.11)

where τ = τ(p, θ) > 0.

Proof. Note that

∇F (u) = −(κ + iβ)
{

(p + 1)
2 |u|p−1∇u + (p − 1)

2 |u|p−3
u2∇ū

}
+ γ ∇u.

Therefore,

|∇F (u)| ≤ C(|u|p−1|∇u| + |∇u|).

The inequality (6.4) as well as the second part of (6.5) follows directly from embedding H2(Ω) ↪→ L∞(Ω)
. The first inequality in (6.5) was proved in [47] in the case of p = 3 and N = 2. A similar proof also applies
to the more general case given in this lemma. The idea is to use the Gagliardo–Nirenberg inequality

∥u∥W 1,4(Ω) ≤ ∥u∥
1
2
L∞∥u∥

1
2
H2(Ω).
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In order to prove inequality (6.6), we first estimate ∇Ft(u, w):

|∇Ft(u, w)| ≤ C
(

|u|p−2|∇u∥w| + |u|p−1|∇w| + |γ∥∇w|
)

. (6.12)

Setting C := C(κ, β, p), by the triangle inequality, we have

∥Ft(u, w)∥V ≤ C
{

∥u∥p−2
L∞(Ω) ∥w∇u∥L2(Ω) + ∥u∥p−1

L∞(Ω) ∥∇ w∥L2(Ω) + |γ| ∥∇ w∥L2(Ω)

}
. (6.13)

Now, we use ∥w∇u∥L2(Ω) ≤ ∥w∥V ∥u∥H2(Ω) and H2(Ω) ↪→ L∞(Ω) to obtain (6.6).
If N = 1, then using H1(Ω) ↪→ L∞(Ω), we can easily obtain from (6.13) that

∥Ft(u, w)∥V ≤ C∥w∥V

(
1 + ∥u∥p−1

V

)
.

If N = 2, then by using the Gagliardo–Nirenberg inequality

∥∇u∥Ls(Ω) ≤ ∥u∥θ
H2(Ω)∥u∥1−θ

V ,

where s > 2 and 0 < θ = 1 − 2
s < 1, and the Sobolev embedding H1(Ω) ↪→ Lq(Ω) (q ≥ 1), we obtain

∥w∇u∥L2(Ω) ≤ C∥w∥Lr(Ω) ∥∇ u∥Ls(Ω)

≤ C∥w∥V ∥u∥θ
H2(Ω)∥u∥1−θ

V

(6.14)

where r = 2s
s−2 . Moreover, for N = 2, one has the Gagliardo–Nirenberg inequality:

∥u∥∞ ≤ ∥u∥
1
2
H2(Ω)∥u∥

1
2
2 .

Therefore, from (6.13) we obtain

∥Ft(u, w)∥V ≤ C∥w∥V

{
∥u∥θ+ p−2

2
H2(Ω) ∥u∥1−θ

V ∥u∥
p−2

2
2 +∥u∥

p−1
2

H2(Ω)∥u∥
p−1

2
2 + 1

}
. (6.15)

Observe that in the above inequality, p−1
2 ≤ 2 if p ≤ 5.

If N = 3, we can again use the Gagliardo–Nirenberg inequality in the form

∥∇u∥L3(Ω) ≤ ∥u∥
1
3
H2(Ω)∥u∥

2
3
V

and use the embedding H1(Ω) ↪→ L6(Ω) to obtain

∥w∇u∥L2(Ω) ≤ C∥w∥L6(Ω) ∥∇ u∥L3(Ω)

≤ C∥w∥V ∥u∥θ
H2(Ω)∥u∥1−θ

V .
(6.16)

Moreover, for N = 3, one has the Gagliardo–Nirenberg inequality:

∥u∥∞ ≤ ∥u∥
3
4
H2(Ω)∥u∥

1
4
2 .

Therefore, we obtain

∥Ft(u, w)∥V ≤ C∥ w∥V

{
∥u∥θ+ 3(p−2)

4
H2(Ω) ∥u∥1−θ

V ∥u∥
p−2

4
2 +∥u∥

3(p−1)
4

H2(Ω) ∥u∥
p−1

4
2 + 1

}
. (6.17)

Note that in the above case, 3(p−1)
4 ≤ 2 if p ≤ 11

3 . □

Now, we take into account the following compatibility condition:
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Definition 6.1 (Compatibility Condition (CC)). We consider

∂ u0

∂ ν
+ (λ + iα)∆u0 − F (u0) = 0 on Γ1 .

We also define the following spaces:

X0 =

⎧⎪⎪⎨⎪⎪⎩
(u0, w0) ∈ V × V
w0 = (λ + iα)∆u0 − F (u0)
∆u0 ∈ V
u0 satisfies CC (Definition 6.1)

and the Banach space

XT =
{

(u, w) : u ∈ C[0, T ; H2(Ω) ∩ H1
Γ0(Ω)], w ∈ C[0, T ; H1

Γ0(Ω)), ut = w
}

.

We note that from the elliptic theory, we get

∆u0 ∈ V ↪→ H1(Ω) and ∂ u0

∂ ν
= −w0|Γ1 ∈ H1/2(Γ ).

So, we have the implication: (u0, w0) ∈ X0 ⇒ u0 ∈ H2(Ω).
Thus, it makes sense to define the following norms on X0 and XT :

∥(u, w)∥2
X0 = ∥u∥2

H2(Ω) + ∥w∥2
V ,

∥(u, w)∥2
XT

= sup
t∈[0,T ]

∥u∥2
H2(Ω) + sup

t∈[0,T ]
∥w∥2

V .

We will prove Theorem 2.5 in several steps.

Step 1: Setting the map. We will restrict the map K defined previously to a special complete metric
space in order to obtain a contraction.

Lemma 6.2. Let

QT ≡ {(u∗, w∗) ∈ XT s.t. u∗(0) = u0}.

Then, QT is a non-empty complete metric space with the metric induced from the norm of XT , i.e., with
the metric given by

dQT
((u∗

1, w∗
1), (u∗

2, w∗
2)) = sup

t∈[0,T ]
∥u∗

1 − u∗
2∥2

H2(Ω) + sup
t∈[0,T ]

∥w∗
1 − w∗

2∥2
H1

Γ0
(Ω).

Proof. (u0, 0) ∈ QT , hence QT is nonempty. It is easy to see that dQT
is a metric. Now, in order to show

completeness of QT , take (u∗
n, w∗

n) ∈ QT such that (u∗
n, w∗

n) → (u∗, w∗) ∈ XT . This means u∗
n(0) = u0 and

limn

[
supt∈[0,T ]∥u∗

n − u∗∥2
H2(Ω)

]
= 0, which implies

0 ≤ ∥u∗(0) − u0∥H2(Ω) = ∥u∗(0) − u∗
n(0)∥H2(Ω) ≤ sup

[0,T ]
∥u∗ − u∗

n∥H2(Ω).

Passing to the limit as n → ∞, we get u∗(0) = u0. Namely, (u∗, w∗) ∈ QT . That is QT is closed. But closed
subsets of complete spaces are complete. Therefore, QT is complete since XT is complete. □
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Now let (u0, w0) ∈ X0. We consider the map K(u⋆, w⋆), with (u⋆, w⋆) ∈ QT , which produces solutions
(u, w) ∈ C1([0, T ]; V ) ∩ C([0, T ]; V ) to the respective problems:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ut − (λ + iα)∆u = F (u⋆), in Ω × R+,
u = 0, on Γ0 × R+,
∂u

∂ν
+ (λ + iα)∆u − F (u⋆) = 0, on Γ1 × R+,

u(0) = u0, in Ω

(6.18)

and ⎧⎪⎪⎪⎨⎪⎪⎪⎩
wt − (λ + iα)∆w = Ft(u⋆, w⋆), in Ω × R+,
w = 0, on Γ0 × R+,
∂w

∂ν
+ (λ + iα)∆w − Ft(u⋆, w⋆) = 0, on Γ1 × R+,

w(0) = w0, in Ω .

(6.19)

We would like to give some important remarks at this point.

Remark 6.1.

(i) It is important to note that u0 satisfies the necessary compatibility conditions since (u∗, w∗) is taken
from the specially constructed space QT introduced in the previous lemma, which enforces the equality
F (u∗(0)) = F (u0).

(ii) One should also observe that K maps the elements of QT again to the elements of QT . This follows
from the linear theory and the fact that (u, w) = K(u∗, w∗) is continuous on [0,T] so that in particular
u(0) = u0, i.e., (u, w) ∈ QT .

Componentwise, the map K(u⋆, w⋆) can be thought as the composition of{
K(u⋆, ·) : u⋆ ↦−→ F (u⋆) ↦−→ u
K(·, w⋆) : w⋆ ↦−→ Ft(·, w⋆) ↦−→ w.

These component maps can be found explicitly via the “boundary solver” introduced in Lemma 4.2 as
follows:

K(u⋆, ·) = u(t)

=
(

eAtu∗
0 −

∫ t

0
eA(t−s)A N F (u⋆(s)) ds +

∫ t

0
eA(t−s)F (u⋆(s)) ds

)
(6.20)

K(·, w⋆) = w(t)

=
(

eAtw∗
0 −

∫ t

0
eA(t−s)A N Ft(·, w⋆(s)) ds +

∫ t

0
eA(t−s)Ft(·, w⋆(s)) ds

)
. (6.21)

As before, A is the operator given in (2.4) with Wentzell boundary conditions, N is the Neumann map
as seen in (4.1).

Step 2: The estimates: Invariance of the Ball in XT

We recall that K(u⋆, w⋆) = (u, w) where u satisfies (6.18) with the right hand side f ≡ F (u⋆) and
w satisfies (6.19) with the right hand side f ≡ Ft(u⋆, w⋆). Since the initial data satisfies the required
compatibility conditions, we are in a position to apply the estimates of Theorem 4.2 . This yields:

∥w∥C([0,T ];V ) + ∥u∥C([0,T ];H2(Ω)) (6.22)

≤ C
(

∥F (u⋆)∥L2(0,T ;V ) + ∥Ft(u⋆, w⋆)∥L2(0,T,V ) + ∥u0∥V + ∥∆u0∥V

)
.
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We first need to verify that K(u⋆, w⋆) maps BR(QT ) into BR(QT ), where BR(QT ) denotes the closed
ball of radius R in the space QT . Below we will suitably choose R and T . To accomplish this, we shall use
the estimates in (6.22) and Lemma 6.1. To this end, let R > 0 be a fixed number (to be chosen in a moment)
such that (u∗, w∗) ∈ BR(XT ).

Making use of estimates (6.4) and (6.6) given in Lemma 6.1, we conclude that
∥F (u⋆)∥L2(0,T ;V ) + ∥Ft(u⋆, w⋆)∥L2(0,T,V )

=
[∫ T

0
∥F (u⋆(t))∥2

V dt

]1/2

+
[∫ T

0
∥Ft(u⋆(t), w⋆(t))∥2

V dt

]1/2

≤

[∫ T

0
2
(

1 + ∥u⋆(t)∥2(p−1)
H2(Ω)

) (
∥u⋆(t)∥2

V + ∥w⋆(t)∥2
V

)
dt

]1/2

≤ C T 1/2
(

1 + ∥u⋆∥p−1
C([0,T ];H2(Ω))

) (
∥u⋆∥C([0,T ];H2(Ω)) + ∥w⋆∥C([0,T ];V )

)
.

≤ C 2RT 1/2 (1 + Rp−1) .

(6.23)

Combining (6.22) and (6.23), we infer,
∥K(u⋆, w⋆)∥XT

= ∥(u, w)∥XT

= ∥w∥C([0,T ];V ) + ∥u∥C([0,T ];H2(Ω))

≤ Cu0 + C 2RT 1/2 (1 + Rp−1) .

Let R = 2Cu0 . Then, for small T , K maps BR(QT ) into itself.
Step 3: Contraction. We will show that for small T , there exist 1 > ρ > 0 such that

∥K(u⋆
1, w⋆

1) − K(u⋆
2, w⋆

2)∥XT
≤ ρ ∥(u⋆

1 − u⋆
2, w⋆

1 − w⋆
2)∥XT

, ∀ (u⋆
1, w⋆

1), (u⋆
2, w⋆

2) ∈ BR(XT ).

Let (u∗
1, w∗

1), (u∗
2, w∗

2) ∈ XT . Then by arguments similar to those above, we can obtain
∥K(u⋆

1, w⋆
1) − K(u⋆

2, w⋆
2)∥XT

= ∥(u1 − u2, w1 − w2)∥XT

= ∥u1 − u2∥C([0,T ];H2(Ω)) + ∥w1 − w2∥C([0,T ];V )

≤
∫ T

0
∥F (u⋆

1(s)) − F (u⋆
2(s))∥H2(Ω) ds

+
∫ T

0
∥Ft(u⋆

1(s), w⋆
1(s)) − Ft(u⋆

2(s), w⋆
2(s))∥V ds .

(6.24)

By using the local Lipschitz estimates for F and Ft, taking into account that (u⋆
1, w⋆

1), (u⋆
2, w⋆

2) ∈ BR(XT ),
one obtains:

∥F (u⋆
1) − F (u⋆

2)∥H2(Ω)≤C1

(
∥u⋆

1∥c(p)
H2(Ω), ∥u⋆

2∥c(p)
H2(Ω), |γ|

)
∥u⋆

1 − u⋆
2∥H2(Ω)

≤C1(R) ∥u⋆
1 − u⋆

2∥H2(Ω)

and

∥Ft(u⋆
1, w⋆

1) − F (u⋆
2, w⋆

2)∥V ≤C2

(
∥u⋆

1∥c(p)
H2(Ω), ∥u⋆

2∥c(p)
H2(Ω), |γ|

)
∥w⋆

1 − w⋆
2∥V

≤C2(R) ∥w⋆
1 − w⋆

2∥V .

Setting C3 := max{C1(R), C2(R)}, from (6.24), we have
∥K(u⋆

1, w⋆
1) − K(u⋆

2, w⋆
2)∥XT

≤ C3

∫ T

0

[
∥u⋆

1(s) − u⋆
2(s)∥H2(Ω) + ∥w⋆

1(s) − w⋆
2(s)∥V

]
ds

≤ T C3

[
∥u⋆

1 − u⋆
2∥C([0,T ];H2(Ω)) + ∥w⋆

1 − w⋆
2∥C([0,T ];V )

]
≤ TC3 ∥(u⋆

1 − u⋆
2, w⋆

1 − w⋆
2)∥XT

.

(6.25)
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The above estimate proves that K is a contraction if T is sufficiently small. This proves the local existence
and uniqueness of a strong solution in BR(QT ).

Remark 6.2. The above result says that there is a unique local solution in BR(QT ). This does not mean
that there is uniqueness in QT . In the case, α, β > 0, one can also prove the uniqueness in QT . This directly
follows from (7.10).

7. Global well-posedness of strong solutions

In this section, we study the global strong solutions of the CGLE with dynamic boundary conditions with
power type nonlinearity under the additional assumption β > 0. Our proofs for strong solutions will use
Sobolev embeddings. Therefore, we will have some restriction on p. In [19], it is proven that the defocusing
cubic NLS with dynamic boundary conditions is globally well-posed for N = 2. Here, we improve this result
in the context of the CGLE by proving the well-posedness of global solutions for dimensions N ≤ 3. More
precisely, we prove global well-posedness for p ≥ 2 if N = 1; p ∈ [2, 5] if N = 2; and p ∈

[
2, 11

3
]

if N = 3.
The smoothing effect will play a major role in this context. This is a missing ingredient in the case of the
nonlinear Schrödinger equations.

Suppose 0 < Tmax ≤ ∞ denotes the maximal time of existence of a given local strong solution. We
want to prove that Tmax = ∞ by showing that ∥(u, ut)∥XT

remain bounded on [0, Tmax). To this end, we
first prove the following lemma which is true in any dimension. Similar estimates were proved, for example,
in [2, Lemmas 3.2 and 5.2], where the domain was either the whole space or a torus (periodic boundary
conditions). Here, our aim is to obtain a uniform energy bound for the solutions.

Lemma 7.1. Let u0 ∈ V ∩ Lp+1(Ω) with γ0u0 ∈ Lp+1(Γ1). Then,

(i) if γ > 0, then E(t) ≤ E(0) exp(CTmax) for t ∈ [0, Tmax), where

E(t) ≡ α

2 ∥∇u(t)∥2
L2(Ω) + β

p + 1∥u(t)∥p+1
Lp+1(Ω) + 1

p + 1(ακ + βλ)∥u∥p+1
Lp+1(Γ1) (7.1)

+ α

∫ t

0
∥ut(s)∥2

L2(Γ1)ds + αλ

∫ t

0
∥∆u∥2

L2(Ω)ds + κβ

∫ t

0
∥u(s)∥2p

L2p(Ω).

(ii) if γ ≤ 0, then E(t) ≤ E(0) for t ∈ [0, Tmax), where

E(t) ≡ α

2 ∥∇u(t)∥2
L2(Ω) + β

p + 1∥u(t)∥p+1
Lp+1(Ω) − αγ

2 ∥u(t)∥2
L2(Γ1) + 1

p + 1(ακ + βλ)∥u∥p+1
Lp+1(Γ1)

+ α

∫ t

0
∥ut(s)∥2

L2(Γ1)ds + αλ

∫ t

0
∥∆u∥2

L2(Ω)ds + κβ

∫ t

0
∥u(s)∥2p

L2p(Ω).

(7.2)

Moreover, in both cases above, the solutions enjoy the following interior and boundary regularity for all
T > 0:

(u, ut) ∈ [C([0, T ]; V ∩ Lp+1(Ω)) ∩ L2(0, T ; H2(Ω)) ∩ L2p(0, T ; L2p(Ω))] × L2(0, T ; L2(Ω)),

∂u

∂n
= γ0ut ∈ L2(0, T ; L2(Γ1)), γ0u ∈ C([0, T ]; Lp+1(Γ1)).

Proof. We start by taking the real part of the scalar product of −α∆u + β|u|p−1
u and ut:

Re(−α∆u + β|u|p−1
u, ut) = Re(−α∆u + β|u|p−1

u, (λ + iα)△u − (κ + iβ)|u|p−1
u + γu)

= −αλ∥∆u∥2
L2(Ω) + αγ∥∇u∥2

L2(Ω) − αγRe(∂u

∂n
, u)L2(Γ1) − κβ∥u∥2p

L2p(Ω) + βγ∥u∥p+1
Lp+1(Ω)

+ αRe(∆u, (κ + iβ)|u|p−1
u) + βRe(|u|p−1

u, (λ + iα)△u)
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= −αλ∥∆u∥2
L2(Ω) + αγ∥∇u∥2

L2(Ω) − αγRe(∂u

∂n
, u)L2(Γ1) − κβ∥u∥2p

L2p(Ω) + βγ∥u∥p+1
Lp+1(Ω)

− αRe(∇u, (κ + iβ)∇
(

|u|p−1
u
)

) + αRe(∂u

∂n
, (κ + iβ)|u|p−1

u)L2(Γ1)

− βRe(∇(|u|p−1
u), (λ + iα)∇u) + βRe(|u|p−1

u, (λ + iα)∂u

∂n
)L2(Γ1).

(7.3)

The first boundary term at the right hand side of (7.3) can be estimated by

⏐⏐⏐⏐−αγRe(∂u

∂n
, u)L2(Γ1)

⏐⏐⏐⏐ ≤ αγ

2

(
Cϵ∥u∥2

L2(Γ1) + ϵ

∂u

∂n

2

L2(Γ1)

)
(7.4)

≤ αγ

2

(
Cϵ∥∇u∥2

L2(Ω) + ϵ ∥ut∥2
L2(Γ1)

)
.

Alternatively, by using ∂u
∂ν |Γ1 = −ut one also has

− αγRe(∂u

∂n
, u)L2(Γ1) = αγ

2
d

dt
∥u∥2

L2(Γ1). (7.5)

Under the assumption β > 0, we have ακ + βλ > 0 and

−αRe(∇u, (κ + iβ)∇
(

|u|p−1
u
)

) − βRe(∇(|u|p−1
u), (λ + iα)∇u) (7.6)

= −(ακ + βλ)Re(∇(|u|p−1
u), ∇u) = −(ακ + βλ)Re(∇u, (p + 1

2 |u|p−1∇u + p − 1
2 |u|p−3

u2∇ū))

= −(ακ + βλ)
[

p + 1
2

∫
Ω

|u|p−1|∇u|2dx + p − 1
2 Re

∫
Ω

|u|p−3
ū2(∇u)2dx

]
≤ 0.

The last term at the right hand side of (7.3) is calculated as follows:

αRe(∂u

∂n
, (κ + iβ)|u|p−1

u)L2(Γ1) + βRe(|u|p−1
u, (λ + iα)∂u

∂n
)L2(Γ1) (7.7)

= (ακ + βλ)Re(|u|p−1
u,

∂u

∂n
)L2(Γ1) = − 1

(p + 1)(ακ + βλ) d

dt
∥u∥p+1

Lp+1(Γ1).

On the other hand, by using the main equation, we can rewrite the same scalar product in (7.3) as

Re(−α∆u + β|u|p−1
u, ut) = α

2
d

dt
∥∇u∥2

L2(Ω) + β

p + 1
d

dt
∥u∥p+1

Lp+1(Ω) − αRe(∂u

∂n
, ut)L2(Γ1)

= α

2
d

dt
∥∇u∥2

L2(Ω) + β

p + 1
d

dt
∥u∥p+1

Lp+1(Ω) + α∥ut∥2
L2(Γ1).

(7.8)

If γ ≥ 0, it follows that

E(t) − E(0) ≤ αγ(1 + Cϵ

2 )
∫ t

0
∥∇u(s)∥2

L2(Ω)ds + βγ

∫ t

0
∥u(s)∥p+1

Lp+1(Ω) + ϵ
αγ

2

∫ t

0
∥ut(s)∥2

L2(Γ1)ds

≤ ϵ
γ

2 E(t) + C

∫ t

0
E(s)ds,

(7.9)

where ϵ > 0 small and fixed.
Therefore,

E(t) ≤ CE(0) + C

∫ t

0
E(s)ds.
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Now, using Gronwall’s inequality, we conclude that

E(t) ≤ E(0) exp(CTmax) (7.10)

for t ∈ [0, Tmax).
Now, we consider the case γ < 0 and define E(t) as in (7.2). Bu utilizing the alternative calculation in

(7.5), we get

E(t) − E(0) ≤ αγ

2

∫ t

0
∥∇u(s)∥2

L2(Ω)ds + βγ

∫ t

0
∥u(s)∥p+1

Lp+1(Ω) ≤ 0. (7.11)

This gives E(t) ≤ E(0) when γ < 0.

Hence, we proved that the corresponding solution (u, ut) is global in the sense that, for all T > 0,

(u, ut) ∈
[
C([0, T ]; V ∩ Lp+1(Ω)) ∩ L2(0, T ; H2(Ω)) ∩ L2p(0, T ; L2p(Ω))

]
× L2(0, T ; L2(Ω))

and

γ0u ∈ C([0, T ]; Lp+1(Γ1)), ∂u

∂n
= γ0ut ∈ L2(0, T ; L2(Γ1)). □

Lemma 7.2. Let u be a local solution. Then,

(1) If N = 1 and 1 < p < ∞, then ∥F (u)∥V ≤ C.

(2) If N = 2 and 1 < p < ∞, then ∥F (u)∥V ≤ C + C∥u∥θ
H2(Ω) where 1 > θ > 0 can be chosen as small as

we wish.
(3) If N ≥ 3 and 1 < p < N

N−2 , then ∥F (u)∥V ≤ C + C∥u∥θ
H2(Ω) where 1 > θ > 0 can be chosen as small

as we wish.
(4) If N = 3 and p ≥ 3, then ∥F (u)∥V ≤ C + C∥u∥

3(p−1)
4

H2(Ω) . If in addition p < 11
3 , then ∥F (u)∥V ≤

Cϵ + ϵ∥u∥2
H2(Ω) for any fixed small ϵ > 0.

Proof. Note that

∇F (u) = −(κ + iβ)
{

(p + 1)
2 |u|p−1∇u + (p − 1)

2 |u|p−3
u2∇ū

}
+ γ ∇u.

Therefore,

|∇F (u)| ≤ C(|u|p−1|∇u| + |∇u|).

The case N = 1 follows from the Sobolev embedding H1(Ω) ↪→ L∞(Ω) and Lemma 7.1.
Let N = 2 and 1 < p < ∞. Then, by using the Gagliardo–Nirenberg inequality

∥∇u∥Ls(Ω) ≤ ∥u∥θ
H2(Ω)∥u∥1−θ

V , (7.12)

where s > 2 and 0 < θ = 1 − 2
s < 1, the Sobolev embedding H1(Ω) ↪→ Lq(Ω) (q ≥ 1), and Lemma 7.1, we

have

∥F (u)∥V ≤ C
(

∥u∥(p−1)
q ∥∇u∥s + ∥∇u∥L2(Ω)

)
≤ C

(
∥u∥(p−1)

V ∥u∥1−θ
V ∥u∥θ

H2(Ω) + ∥u∥V

)
(7.13)

with q > 2(p − 1) and q ≥ 1.
Let N ≥ 3 and 1 < p < N

N−2 ; then we have the following Gagliardo–Nirenberg inequality:

∥∇u∥Ls(Ω) ≤ ∥u∥θ
H2(Ω)∥u∥1−θ

V (7.14)

where 2N
N−2 > s = 4N

2N−2(N−2)(p−1) > 2 and 0 < θ = (s−2)N
2s < 1.
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For q = 2N
N−2 , (7.13) can be rewritten as

∥F (u)∥V ≤ C
(

∥|u|p−1|∇u|∥L2(Ω) + |∇u|∥L2(Ω)

)
≤ C

(
∥u∥(p−1)

q ∥∇u∥s + ∥u∥V

)
≤ C

(
∥u∥(p−1)

V ∥u∥θ
H2(Ω)∥u∥1−θ

V + ∥u∥V

)
.

(7.15)

Let N = 3 and p ≥ 3, then we have the Gagliardo–Nirenberg inequality

∥u∥∞ ≤ C∥u∥
3
4
H2(Ω)∥u∥

1
4
2 .

Therefore,

∥F (u)∥V ≤ C
(

∥u∥p−1
∞ ∥∇u∥L2(Ω) + ∥∇u∥L2(Ω)

)
≤ C

(
∥u∥

3
4 (p−1)
H2(Ω) ∥u∥

p−1
4

L2(Ω)∥∇u∥2 + ∥u∥V

)
. (7.16)

Note that if in addition, p < 11
3 , then 3

4 (p − 1) < 2. □

Now, we will prove the following estimate:

∥ut(t)∥V + ∥u(t)∥H2(Ω) ≤ C(u0, Tmax) + C

(∫ t

0
∥Ft(u(s), ut(s))∥V ds

+
[∫ t

0

∫
Γ1

|Ft(u(s), ut(s))|2dΓ ds
]1/2

)
(7.17)

where the constants C(u0, Tmax) and C are given more precisely later.
Substituting f = F (u) in (2.9), using g = −f |Γ1

and (4.18), (4.19) can be written as

ut = (λ + iα)eA t△ u0 + eA tF (u0) +
∫ t

0
eA (t−s)Ft(u(s), ut(s))ds

− A

∫ t

0
eA (t−s)N Ft(u(s), ut(s))ds.

(7.18)

On the other hand, employing Lemma 7.2, it follows that

∥eA tF (u0)∥V ≤ C(∥u0∥H2(Ω)). (7.19)

Then, combining (7.18), (7.19), and the continuity of the map L given in (4.15) (whose bound, say is η),
we obtain

∥ut(t)∥V ≤ C
(

∥△ u0∥V , ∥u0∥H2(Ω)

)
  

:=Cu0

+
∫ t

0
∥Ft(u(s), ut(s))∥V ds + ∥L(Ft(u(s), ut(s)))∥C([0,T ];V )

≤ Cu0 +
∫ t

0
∥Ft(u(s), ut(s))∥V ds + η∥Ft(u(s), ut(s))∥L2(0,t;L2(Γ1))

= Cu0 +
∫ t

0
∥Ft(u(s), ut(s))∥V ds + η

[∫ t

0
∥Ft(u(s), ut(s))∥2

L2(Γ1) ds

]1/2

≤ Cu0 +
∫ t

0
∥Ft(u(s), ut(s))∥V ds + η

[∫ t

0
∥Ft(u(s), ut(s))∥2

L2(Γ1) ds

]1/2

.

(7.20)

Now, from (4.21) and the continuity of the trace map γ : H1(Ω) → H1/2(Γ1) (whose embedding constant,
say ς), we have

∥u(t)∥H2(Ω) ≤ C1

(
∥ut(t)∥V + ∥F (u(t))∥V + ∥F (u(t))∥H1/2(Γ1)

)
≤ C1 (∥ut(t)∥V + (1 + ς)∥F (u(t))∥V ) .

(7.21)

Thus, combining Lemma 7.2, (7.20) and (7.21), (7.17) follows.
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Now, we employ an inequality derived from the Gagliardo–Nirenberg inequality (see [2]):

∥z(t)∥H2(Ω) ≤ C
(

∥z∥L2(Ω) + ∥△ z∥L2(Ω)

)
(7.22)

≤ C̃
(

∥z∥V + ∥△ z∥L2(Ω)

)
, ∀ z ∈ H2(Ω) .

On the other hand, from Lemma 6.1 and (7.22), we obtain:∫ t

0
∥Ft(u(s), ut(s))∥V ds ≤ C

∫ t

0
∥w(s)∥V

(
∥u(s)∥2

H2(Ω) + 1
)

ds. (7.23)

Having in mind that γ̃ denotes a trace operator-restriction to the boundary Γ1, a mixed trace-interpolation
inequality results

∥γ̃u∥2
L2(Γ1) ≤ C∥u∥H1(Ω)∥u∥L2(Ω) . (7.24)

This implies

∥γ̃Ft(u, w)∥2
L2(Γ1) ≤ C∥Ft(u, w)∥H1(Ω)∥Ft(u, w)∥L2(Ω) . (7.25)

Recall that for N = 1, we have H1(Ω) ↪→ L∞(Ω); for N = 2, H1(Ω) ↪→ Lq(Ω) if 1 ≤ q < ∞; for N ≥ 3,
H1(Ω) ↪→ Lq(Ω) if 1 ≤ q ≤ 2N

N−2 . Using these Sobolev embeddings and Lemma 7.1, for p ≤ N
N−2 if N ≥ 3

we get:

∥Ft(u, w)∥L2(Ω) ≤ C
(

∥ |u|p−1
w∥L2(Ω) + ∥w∥L2(Ω)

)
≤ CE(0)∥w∥V . (7.26)

Lemma 7.3. Let α, β, λ, κ > 0. Then, there exists M > 0 such that

sup
t∈[0,Tmax)

∥w(t)∥V < M < ∞.

Proof. Multiply, (6.2) by −α∆w̄, integrate over Ω and take the real parts. Then, by also using (7.26) we
have

α

2
d

dt
∥∇w∥2

L2(Ω) + α∥wt∥2
L2(Γ1) + αλ∥∆w∥2

2 = −αRe(Ft(u, w),∆w)L2(Ω) (7.27)

≤ 1
4ϵ

∥Ft(u, w)∥2
L2(Ω) + ϵ∥∆w∥2

L2(Ω) ≤ C(E(0))∥w∥2
V + ϵ∥∆w∥2

L2(Ω).

The above inequality gives

∥w(t)∥2
V ≤ ∥w0∥2

V + C(E(0))
∫ t

0
∥w(s)∥2

V ds.

Now, from Gronwall’s inequality the desired property follows. □

Remark 7.1. From (7.27), we note that we are able to control the term ϵ∥∆w∥2
L2(Ω) with the term αλ∥∆w∥2

2
at the left hand side. This is an important property for CGLE. For instance, in the case of the nonlinear
Schrödinger equation [34], one does not have such a control since λ = 0.

Now, it follows from (7.25) and (7.26) that

∥γ̃Ft(u, w)∥2
L2(Γ1) ≤ C∥Ft(u, w)∥H1(Ω) . (7.28)
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Moreover, from (7.23), we get∫ t

0
∥Ft(u(s), ut(s))∥V ds ≤ C + C

∫ t

0
∥u(s)∥2

H2(Ω) ds. (7.29)

But the right hand side of (7.29) is bounded by a constant due to Lemma 7.1 (since λ > 0). Combining this
with (7.17), we obtain

∥(u, ut)∥XT
≤ C.

Hence, we obtained a uniform bound for ∥(u, ut)∥XT
on [0, Tmax). The proof of the global existence of strong

solutions is complete.

8. Weak solutions

In this section, we will prove the global existence and uniqueness of weak solutions given in Theorem 2.7.
So, let

u0 ∈ V such that γ0φ ∈ Lp+1(Γ1)

and

{uµ,0}

be smooth enough that

uµ,0 −→ u0 in Q (8.30)

and for each µ ∈ N, uµ is the unique strong solution of (2.15) with initial data {uµ,0}. Then, uµ solves⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tuµ − (λ + iα)△uµ + (κ + i β)|uµ|p−1

uµ − γuµ = 0 in Ω × R+,
∂uµ

∂ν
= −∂tuµ on Γ1 × R+,

uµ = 0 on Γ0 × R+,
uµ(0) = uµ,0 in Ω .

(8.31)

Now, we define zµ,σ := uµ − uσ for µ, σ ∈ N. We prove the following for {zµ,σ}:

Lemma 8.1. Eµ,σ(t) ≤ Eµ,σ(0) exp(CT ), t ∈ [0, T ], where the definition of Eµ,σ is given in (8.43).

Proof. Setting G(zµ,σ) := |uµ|p−1
uµ − |uσ|p−1

uσ, we observe that

Re(−α∆zµ,σ + β G(zµ,σ), z′
µ,σ) (8.32)

= Re (−α∆zµ,σ + β G(zµ,σ), (λ + iα)△zµ,σ − (κ + iβ) G(zµ,σ) + γzµ,σ)

= −αλ∥∆zµ,σ∥2
L2(Ω) + αγ∥∇zµ,σ∥2

L2(Ω) − αγRe

(
∂zµ,σ

∂n
, zµ,σ

)
L2(Γ1)

− κβ∥G(zµ,σ)∥2
2 + βγ(G(zµ,σ), zµ,σ)

+ αRe(∆zµ,σ, (κ + iβ)G(zµ,σ)) + βRe(G(zµ,σ), (λ + iα)△zµ,σ)

= −αλ∥∆zµ,σ∥2
L2(Ω) + αγ∥∇zµ,σ∥2

L2(Ω) − αγRe

(
∂zµ,σ

∂n
, zµ,σ

)
L2(Γ1)

− κβ∥f(u)∥2
2 + βγ(G(zµ,σ), zµ,σ)

− αRe(∇zµ,σ, (κ + iβ)∇G(zµ,σ)) + α Re
(

∂zµ,σ

∂n
, (κ + iβ)G(zµ,σ)

)
L2(Γ1)

− β Re (∇G(zµ,σ), (λ + iα)∇zµ,σ) + β Re
(

G(zµ,σ), (λ + iα)∂zµ,σ

∂n

)
L2(Γ1)

.
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On the other hand, it follows that⏐⏐⏐⏐⏐−αγRe

(
∂zµ,σ

∂n
, zµ,σ

)
L2(Γ1)

⏐⏐⏐⏐⏐ ≤ αγ

2

⏐⏐⏐z′
µ,σ, (zµ,σ)L2(Γ1)

⏐⏐⏐ (8.33)

≤ αγM ∥z′
µ,σ∥L2(Γ1) ∥zµ,σ∥L2(Γ1)

≤ αγ

2

(
Cϵ1∥zµ,σ∥2

L2(Γ1) + ϵ1
z′

µ,σ

2
L2(Γ1)

)
≤ αγ

2

(
Cϵ1∥∇zµ,σ∥2

L2(Ω) + ϵ1
z′

µ,σ

2
L2(Γ1)

)
.

Alternatively, by using ∂zµ,σ

∂ν |Γ1 = −z′
µ,σ one also has

− αγ Re
(

∂zµ,σ

∂n
, zµ,σ

)
L2(Γ1)

= αγ

2
d

dt
∥zµ,σ∥2

L2(Γ1). (8.34)

Re(−α∆zµ,σ + β G(zµ,σ), z′
µ,σ) = α

2
d

dt
∥∇zµ,σ∥2

L2(Ω) − Re
(

∂zµ,σ

∂n
, z′

µ,σ

)
L2(Γ1)

+ Re(β G(zµ,σ), z′
µ,σ)

= α

2
d

dt
∥∇zµ,σ∥2

L2(Ω) + α∥z′
µ,σ∥2

L2(Γ1) + Re(β G(zµ,σ), z′
µ,σ).

(8.35)

Now, taking account of (7.22), from the following local Lipschitz estimates:

∥G(zµ,σ)∥L2(Ω) ≤ (∥uµ∥H2 , ∥uσ∥H2) ∥zµ,σ∥L2(Ω) ≤ C (∥uµ,0∥H2 , ∥uσ,0∥H2) ∥zµ,σ∥L2(Ω) (8.36)
∥G(zµ,σ)∥V ≤ (∥uµ∥H2 , ∥uσ∥H2) ∥zµ,σ∥V ≤ C (∥uµ,0∥H2 , ∥uσ,0∥H2) ∥zµ,σ∥V , (8.37)

we have

Re(−α∆zµ,σ + β G(zµ,σ), z′
µ,σ) = α

2
d

dt
∥∇zµ,σ∥2

L2(Ω) + α∥z′
µ,σ∥2

L2(Γ1) + Re(β G(zµ,σ), z′
µ,σ)

≤ α

2
d

dt
∥∇zµ,σ∥2

L2(Ω) + α∥z′
µ,σ∥2

L2(Γ1)

+ β C ′ ∥∇ G(zµ,σ)∥L2(Ω) ∥z′
µ,σ∥L2(Ω)

≤ α

2
d

dt
∥∇zµ,σ∥2

L2(Ω) + α∥z′
µ,σ∥2

L2(Γ1) + β Cϵ2∥∇ zµ,σ∥2
L2(Ω)

+ β C ϵ2

[
∥△ zµ,σ∥2

L2(Ω) + ∥G(zµ,σ)∥2
L2(Ω) + ∥zµ,σ∥2

V

]
(8.38)

−αRe(∇zµ,σ, (κ + iβ)∇G(zµ,σ)) − βRe(∇G(zµ,σ), (λ + iα)∇zµ,σ)
= −(ακ + βλ)Re(∇(G(zµ,σ)), ∇zµ,σ)
≤ |ακ + βλ|Re(∇G(zµ,σ), ∇zµ,σ)
≤ |ακ + βλ| ∥G(zµ,σ)∥V ∥zµ,σ∥V ≤ C1 ∥zµ,σ∥2

V

(8.39)

and

|βγ(G(zµ,σ), zµ,σ)| ≤ β γ C2 ∥zµ,σ∥2
V . (8.40)

α Re
(

∂zµ,σ

∂n
, (κ + iβ)G(zµ,σ)

)
L2(Γ1)

+ β Re
(

G(zµ,σ), (λ + iα)∂zµ,σ

∂n

)
L2(Γ1)

(8.41)

= (ακ + βλ) Re
(

G(zµ,σ), ∂zµ,σ

∂n

)
L2(Γ1)

≤ |ακ + βλ|
(

Cϵ3∥G(zµ,σ)∥2
L2(Γ1) + ϵ3

z′
µ,σ

2
L2(Γ1)

)
≤ |ακ + βλ|

(
Cϵ3∥∇zµ,σ∥2

L2(Ω) + ϵ3
z′

µ,σ

2
L2(Γ1)

)
.
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Collecting all the estimates given above, we get

α

2
d

dt
∥∇zµ,σ∥2

L2(Ω) + α
(

1 − γ ϵ1

2 − |ακ + βλ|ϵ3

)
∥z′

µ,σ∥2
L2(Γ1)

+ (αλ − β C ϵ2) ∥∆zµ,σ∥2
L2(Ω) + (κβ − β C ϵ2)∥G(zµ,σ)∥2

2

≤ C ∥∇zµ,σ∥2
L2(Ω) .

(8.42)

Considering ϵi, i = 1, 2, 3 small enough and integrating (8.42) in t ∈ [0, T ], we have

Eµ,σ(t) ≤ CEµ,σ(0) + C

∫ t

0
Eµ,σ(s)ds,

where

Eµ,σ(t) := ∥∇zµ,σ(t)∥2
L2(Ω) + C1

∫ t

0
∥z′

µ,σ(s)∥2
L2(Γ1) ds + C2

∫ t

0
∥∆zµ,σ(s)∥2

L2(Ω) ds (8.43)

Now, using Gronwall’s inequality, we conclude that

Eµ,σ(t) ≤ Eµ,σ(0) exp(CT ) (8.44)

for t ∈ [0, T ]. □

From (8.30) and Lemma 8.1, we conclude that there exists a function u such that, for all T > 0, we have

uµ −→ u in C([0, T ]; V ) ↪→ L2(0, T ; L2(Ω)), (8.45)

u′
µ −→ u′ in L2(0, T ; L2(Γ1)), (8.46)

∆uµ −→ ∆u in L2(0, T ; L2(Ω)). (8.47)

Moreover, from (7.22), (8.45) and (8.47), we have

uµ −→ u in L2(0, T ; H2(Ω)). (8.48)

Considering the last convergence and those given by (8.45)-(8.47), it follows that u is a weak solution in
the sense of Definition 2.1.

Now, let u1 and u2 be two solutions of (1.1). Then w = u1 − u2 satisfies⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
wt − (λ + iα)△w + (κ + i β)

(
|u1|p−1

u1 − |u2|p−1
u2

)
− γw = 0 in Ω × R+,

∂w

∂ν
= −wt on Γ1 × R+,

w = 0 on Γ0 × R+,
w(0) = 0 in Ω .

(8.49)

Since w ∈ H2(Ω) and wt ∈ L2(Ω), a. e. t ∈ [0, T ], we can repeat the procedure used in Lemma 8.1 with
which we can get w = 0 for a.e. (x, t) ∈ Ω × [0, T ].

9. Inviscid limits

In this section, we will prove Theorems 2.8 and 2.9. which state that the solutions of the CGLE subject to
dynamic boundary conditions converge to the solution of NLS subject to same type of boundary conditions
as the parameter pair ϵ = (λ, κ) tends to zero.
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We know from Lemma 7.1 that uϵ is uniformly bounded in L∞(0, T ; V ), ∂tuϵ is bounded in
L2(0, T ; L2(Γ1)), and |uϵ|p−1

uϵ is uniformly bounded in L∞(0, T ; L(p+1)′(Ω)). Using the main equation
and Lemma 7.1 again, we can also see that ∂tuϵ is uniformly bounded in L2(0, T ; V ′). From these bounds,
it follows that there exists a subsequence of uϵ (denoted same) such that

uϵ ⇀ u weakly-star in L∞(0, T ; V ); (9.50)

∂tuϵ ⇀ ut weakly in L2(0, T ; L2(Γ1)); (9.51)

∂tuϵ ⇀ ut weakly in L2(0, T ; V ′); (9.52)

|uϵ|p−1
uϵ ⇀ ξ weakly-star in L∞(0, T ; L(p+1)′

(Ω)). (9.53)

Recall that the bounded sets in X ≡ {u ∈ L2(0, T ; V )|ut ∈ L2(0, T ; V ′)} are relatively compact
in L2(0, T ; L2(Ω)). Therefore, we can assume uϵ → u strongly in L2(0, T ; L2(Ω)) and uϵ → u a.e. in
(0, T ) × Ω . This implies that |uϵ|p−1

uϵ → |u|p−1
u a.e. in (0, T ) × Ω . But we have |uϵ|p−1

uϵ is bounded in
L∞(0, T ; L(p+1)′(Ω)). Therefore ξ ≡ |u|p−1

u. Now, letting ϵ → 0, we see that u solves the idbvp for the NLS.
This completes the proof of Theorem 2.8.

In order to prove Theorem 2.9, we will restrict our attention to only dimension N = 2, p = 3, and β > 0,
for which we know that there is a global strong solution for the NLS [34]. To this end, let uϵ be the global
strong solution of (2.15) with initial datum uϵ(0) = u0

ϵ and p = 3. Suppose u is a global strong solution of
the cubic defocusing nonlinear Schrödinger equation with dynamic boundary conditions below (α, β > 0):⎧⎪⎪⎪⎨⎪⎪⎪⎩

ut − iα△u + iβ|u|2u − γu = 0 in Ω × (0, T ),
∂u

∂ν
= −ut on Γ1 × (0, T ),

u = 0 on Γ0 × (0, T ),
u(0) = u0 in Ω .

(9.54)

Moreover, let us suppose that u0
ϵ → u0 as ϵ → 0 in V .

Set w = uϵ − u. Then, w solves the following problem:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
wt − iα△w + iβ

(
|uϵ|2uϵ − |u|2u

)
− γw − λ∆uϵ + κ|uϵ|2uϵ = 0 in Ω × (0, T ),

∂w

∂ν
= −wt on Γ1 × (0, T ),

w = 0 on Γ0 × (0, T ),
w(0) = wϵ

0 ≡ u0
ϵ − u0 in Ω .

(9.55)

We multiply (9.55) by −∆w̄, integrate over Ω × (0, t), and take the real parts:

1
2∥∇w(t)∥2

L2(Ω) +
∫ t

0
∥wt∥2

L2(Γ1)ds + βIm
∫ t

0
(|uϵ|2uϵ − |u|2u,∆w)L2(Ω)ds (9.56)

−γ

∫ t

0
∥∇w∥2

L2(Ω)ds + γ

∫ t

0
Re(w, ∂νw)L2(Γ1)ds + λRe

∫ t

0
(∆uϵ,∆w)L2(Ω)ds

−κ

∫ t

0
Re(|uϵ|2uϵ,∆w)L2(Ω)ds = 1

2∥∇wϵ
0∥2

L2(Ω).

Using the boundary condition, we estimate

γ

2 Re(w, ∂νw)L2(Γ1) ≤ 1
2∥wt∥2

L2(Γ1) + γ2

8 ∥w∥2
L2(Γ1) ≤ 1

2∥wt∥2
L2(Γ1) + Cγ2

8 ∥w∥2
V , (9.57)
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where the last inequality follows from the trace theorem. On the other hand, we calculate

βRe
∫ t

0
(|uϵ|2uϵ − |u|2u,∆w)L2(Ω)ds (9.58)

= −βRe
∫ t

0

(
∇
(

|uϵ|2uϵ − |u|2u
)

, ∇w
)

L2(Ω)
ds + βRe

∫ t

0
(|uϵ|2uϵ − |u|2u,

∂w

∂ν
)L2(Γ1)ds

≤ β

∫ t

0
∥∇
(

|uϵ|2uϵ − |u|2u
)

∥L2(Ω)∥∇w∥L2(Ω)ds + 1
2

∫ t

0
∥wt∥2

L2(Γ1)ds

+ β2

2

∫ t

0
∥|uϵ|2uϵ − |u|2u∥2

L2(Γ1)ds.

One can prove that (by slightly modifying the calculations in [32, Lemma 3.3]):

∥∇
(

|uϵ|2uϵ − |u|2u
)

∥L2(Ω) ≤ C∥uϵ − u∥L2(Ω) (∥uϵ∥∞ + ∥u∥∞)2 (9.59)
+ C∥uϵ − u∥4 (∥uϵ∥∞ + ∥u∥∞) (∥∇uϵ∥4 + ∥∇u∥4)

≤ C∥uϵ − u∥V

(
∥uϵ∥H2(Ω) + ∥u∥H2(Ω)

)2

+ C∥uϵ − u∥V

(
∥uϵ∥H2(Ω) + ∥u∥H2(Ω)

)(
∥uϵ∥

1
2
H2(Ω)∥uϵ∥

1
2
V + ∥u∥

1
2
H2(Ω)∥u∥

1
2
V

)
≤ C∥w∥V ,

where the second inequality above follows from the facts V ↪→ L2(Ω), H2(Ω) ↪→ L∞(Ω) (N = 2),
H1(Ω) ↪→ L4(Ω) (N = 2), and the Gagliardo–Nirenberg inequality (7.12). Finally, the last inequality
follows from the fact that uϵ, u ∈ C([0, T ]; V ∩ H2(Ω)).

By using the same technique in [32, Lemma 3.3]), we have also the estimate

β2

2 ∥|uϵ|2uϵ − |u|2u∥2
L2(Γ1) (9.60)

≤ C
(

∥uϵ∥4
L∞(Γ1) + ∥u∥4

L∞(Γ1)

)
∥uϵ − u∥2

L2(Γ1)

≤ C
(

∥uϵ∥4
H1(Γ1) + ∥u∥4

H1(Γ1)

)
∥uϵ − u∥2

L2(Γ1) ≤ C

(
∥uϵ∥4

H
3
2 (Ω)

+ ∥u∥4
H

3
2 (Ω)

)
∥uϵ − u∥2

L2(Γ1)

≤ C
(

∥uϵ∥4
H2(Ω) + ∥u∥4

H2(Ω)

)
∥uϵ − u∥2

L2(Γ1) ≤ C∥w∥2
V ,

where the second inequality follows from the embedding H1(Γ1) ↪→ L∞(Γ1) (Γ1 is 1-dimensional manifold),
the third inequality follows from the Sobolev trace theorem, and the last inequality follows from the fact
that u, uϵ ∈ C([0, T ]; H2(Ω)) and the trace theorem.

Combining (9.56)–(9.60), it follows that

1
2∥∇w(t)∥2

L2(Ω) ≤ 1
2∥∇wϵ

0∥2
L2(Ω) + C

∫ T

0
∥w(t)∥2

V dt (9.61)

+ λ∥∆uϵ∥L2(Ω)∥∆w∥L2(Ω) + κ∥uϵ∥3
L6(Ω)∥∆w∥L2(Ω)ds.

In the above inequality ∥uϵ∥L6(Ω), ∥∆w∥L2(Ω), and ∥∆uϵ∥L2(Ω) are bounded by a constant since
H1(Ω) ↪→ L6(Ω), and uϵ, u ∈ C([0, T ]; H2(Ω)). Hence, (9.61) gives

∥∇w(t)∥2
L2(Ω) ≤ ∥u0

ϵ − u0∥2
L2(Ω) + (λ + κ)C + C

∫ T

0
∥w(t)∥2

V dt. (9.62)

Unleashing the Gronwall’s inequality, we have

∥uϵ − u∥2
V ≤ ∥u0

ϵ − u0∥2
L2(Ω) + (λ + κ)C exp(CT ).
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Hence, we have just proven that

∥uϵ − u∥V = O(λ) + O(κ)

as ϵ = (λ, κ) → 0.

10. Long-time behavior of solutions

In this section, we give the proofs of Theorem 2.10 and 2.11. We will first prove the easy case (γ < 0)
and then prove the more subtle case γ = 0. We know from the theory of weak solutions that for any

u0 ∈ Q ≡ {φ ∈ V ∩ Lp+1(Ω) such that γ0φ ∈ Lp+1(Γ1)},

there corresponds a unique global weak solution u which solves (2.15). We claim that this solution tends
to zero in H1(Ω) ∩ Lp+1(Ω) sense as t → ∞ with an exponential rate of decay. We will use the multiplier
technique to prove this where the case γ = 0 requires a special multiplier.

Case 1 (γ < 0):
We consider the functional

F (t) ≡ α

2 ∥∇u(t)∥2
L2(Ω) + β

p + 1∥u(t)∥p+1
Lp+1(Ω).

Note that F (t) ≤ E(t) given in (7.2). Moreover, we have from (7.11) that

F (t) ≤ E(0) + γ

∫ t

0
F (s)ds. (10.63)

Employing Gronwall’s inequality:

F (t) ≤ E0e−|γ|t (10.64)

for t ≥ 0, where

E0 = E(0) = α

2 ∥∇u0∥2
L2(Ω) + β

p + 1∥u0∥p+1
Lp+1(Ω) − αγ

2 ∥u0∥2
L2(Γ1) (10.65)

+ 1
p + 1(ακ + βλ)∥u0∥p+1

Lp+1(Γ1) ≥ 0.

This proves that solutions decay in H1(Ω) ∩ Lp+1(Ω) sense to zero at an exponential rate.
Case 2 (γ = 0):
This case is more subtle and requires some control theoretic tools. We know that solutions of the CGLE

with periodic or homogeneous Dirichlet/Neumann boundary conditions do not have to decay if γ ≥ 0. We
will prove that the dynamic boundary condition plays the role of a damping term and actually stabilizes
the system from the boundary in the absence of an internal damping mechanism. Therefore, the boundary
condition ∂u

∂ν

⏐⏐⏐⏐
Γ1

= −ut can be considered a stabilizing boundary feedback within this context.

Note that Lemma 7.1 tells us that when γ = 0, the energy is non-increasing. In order to prove stabilization,
we will use an integral inequality given in the following lemma.

Lemma 10.1 ([48, Theorem 8.1]). Let F : R+ → R+ be a non-increasing function and assume that there
exists a constant C > 0 such that ∫ ∞

t

F (s)ds ≤ CF (t) for all t ≥ 0. (10.66)

Then,

F (t) ≤ F (0)e1− t
C for all t ≥ 0.
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In order to obtain an integral inequality in the form of (10.66), we calculate

d

dt
(u, q · ∇u)L2(Ω), (10.67)

which is by now a classical multiplier used in the control theory of PDEs and well-posedness theory of
nonhomogeneous initial–boundary value problems. In (10.67), q denotes a sufficiently smooth vector field
on Ω , which will be chosen in a special way later. We have the following lemma:

Lemma 10.2. Let u be a global weak solution of (2.15) and q ∈
[
C2(Ω̄)

]n be a real vector field over Ω .
Then, the following identity holds true:

d

dt
(u, q · ∇u)L2(Ω) −

∫
Γ

(q · ν)uūtdΓ − (κ − iβ)
∫
Ω

div(q)|u|p+1
dx (10.68)

(λ − iα)
∫
Γ

div(q)u∂ν ūdΓ − λ

∫
Ω

((∇(div(q) · ∇ū)u + div(q)|∇u|2))dx

= 2iλIm(∆u, q · ∇u) − 2iκIm(|u|p−1
u, q · ∇u) + 2iα

∫
Γ

(∂νu)(q · ∇ū)dΓ

− 2iαRe
n∑

m,j=1
((∂xmqj)uxm , uxj

) − iα

∫
Γ

(q · ν)|∇u|2dΓ

− 2
p + 1 iβ

∫
Γ

(q · n)|u|p+1
dΓ + 2

p + 1 iβ

∫
Ω

div(q)|u|p+1
dx.

Proof. Since the proof can be made by slightly modifying the proof of [16, Lemma 2.1] and is based on
integration by parts and tedious calculations. It is omitted here. □

Let q = x − x0. Then, by the given geometric assumption on the boundary of Ω in Theorem 2.11 we have
q · ν > 0 on Γ1 and q · ν ≤ 0 on Γ0. We can also simply calculate div(q) = N. It is important to notice that
since u|Γ0 ≡ 0, one has ∇u|Γ0 = (∂νu)ν. Now, using these facts and Lemma 10.2, it follows that

2α

∫ T

t

∥∇u∥2
L2(Ω)dt + Nβ(p − 1)

p + 1

∫ T

t

∥u∥p+1
Lp+1(Ω)dt ≤ C(∥u(T )∥2

V + ∥u(t)∥2
V ) + ϵ

∫ T

t

∥u∥2
V dt

+ Cϵ

∫ T

t

(
∥ut∥2

L2(Γ1)dt + ∥∆u∥2
L2(Ω) + ∥u∥2p

L2p(Ω)

)
.

(10.69)

But from Lemma 7.1, we know that∫ T

t

(
∥ut∥2

L2(Γ1)dt + ∥∆u∥2
L2(Ω) + ∥u∥2p

L2p(Ω)

)
≤ C(F (t) − F (T )).

Combining the last inequality with (10.69), it follows that∫ T

t

F (t)dt ≤ CF (T ) + C(F (t) − F (T )) ≤ CF (t),

and hence ∫ ∞

t

F (t)dt ≤ CF (t)

for t ≥ 0. Now, by using Lemma 10.1, exponential decay follows, and the proof of Theorem 2.11 is completed.
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[15] Ole Morten Aamo, Andrey Smyshlyaev, Miroslav Krstić, Bjarne A. Foss, Output feedback boundary control of a Ginzburg-

Landau model of vortex shedding, IEEE Trans. Automat. Control 52 (4) (2007) 742–748.
[16] Hongjun Gao, Charles Bu, Dirichlet inhomogeneous boundary value problem for the n+1 complex Ginzburg-Landau

equation, J. Differential Equations 198 (1) (2004) 176–195.
[17] Hongjun Gao, Xiaohua Gu, Charles Bu, A Neumann boundary value problem for a generalized Ginzburg-Landau equation,

Appl. Math. Comput. 134 (2–3) (2003) 553–560.
[18] Lionel Rosier, Bing-Yu Zhang, Null controllability of the complex Ginzburg-Landau equation, Ann. Inst. H. Poincaré Anal.
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