Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/7533
Title: | Hierarchically Porous Polymer Derived Ceramics: a Promising Platform for Multidrug Delivery Systems | Authors: | Vakıfahmetoğlu, Çekdar Zeydanlı, Damla Özalp, Veli Cengiz Borsa, Barış Ata Soraru, Gian Domenico |
Keywords: | Hierarchical porous ceramics High surface area Multidrug deliveries Drug delivery systems Silicon compounds |
Publisher: | Elsevier Ltd. | Source: | Ahmetoğlu, Ç. V., Zeydanlı, D., Özalp, V. C., Borsa, B. A., Soraru, G. D. (2018). Hierarchically porous polymer derived ceramics: A promising platform for multidrug delivery systems. Materials and Design, 140, 37-44. doi:10.1016/j.matdes.2017.11.047 | Abstract: | Mesoporous silicon oxycarbide (SiOC) components were formed with the use of “molecular spacer” (a sacrificial vinyl-terminated linear siloxane which while decomposing during pyrolysis generates pores with size proportional to the molecular weight), followed by a post-pyrolysis etching treatment by hydrofluoric acid (HF) to obtain C-rich SiOC samples having additional micro-/mesoporosity and specific surface area reaching to 774 m2/g. The biocompatibility of the samples was validated by hemolysis test, and their cargo/drug loading capacities were studied by two different sized polypeptides as model molecules. SiOC particles showed less hemolysis compared to the reference material MCM-41. Similarly, the loading capacity and the release kinetics of bovine serum albumin (BSA) and vancomycin-loaded SiOC particles were improved compared to that of MCM-41. In the multi cargo loading/release capacity tests, done by using different sized molecules, Bio2-HF and MCM-41 were loaded both with fluorescein and BSA. While a lagging time in fluorescein release was observed for MCM-41, the release kinetics of fluorescein and BSA was not affected when they are loaded together in the hierarchical pores of Bio2-HF, allowing the release of both large and small cargo molecules. The antimicrobial activity tests showed that Bio2-HF performed better than MCM-41 particles in improving bactericidal activity. | URI: | https://doi.org/10.1016/j.matdes.2017.11.047 https://hdl.handle.net/11147/7533 |
ISSN: | 0264-1275 0264-1275 1873-4197 |
Appears in Collections: | Materials Science and Engineering / Malzeme Bilimi ve Mühendisliği Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Show full item record
CORE Recommender
SCOPUSTM
Citations
45
checked on Dec 20, 2024
WEB OF SCIENCETM
Citations
45
checked on Dec 21, 2024
Page view(s)
1,264
checked on Dec 23, 2024
Download(s)
722
checked on Dec 23, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.