Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/7531
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBüyükaşık, Engin-
dc.contributor.authorEnochs, Edgar-
dc.contributor.authorRozas, J. R. García-
dc.contributor.authorKafkas Demirci, Gizem-
dc.contributor.authorLópez-Permouth, Sergio-
dc.contributor.authorOyonarte, Luis-
dc.date.accessioned2019-12-26T07:59:38Z
dc.date.available2019-12-26T07:59:38Z
dc.date.issued2018-02en_US
dc.identifier.citationBüyükaşık, E., Enochs, E., Rozas, J. R. G., Kafkas Demirci, G., López-Permouth, S., and Oyonarte, L. (2018). Rugged modules: The opposite of flatness. Communications in Algebra, 46(2), 764-779. doi:10.1080/00927872.2017.1327066en_US
dc.identifier.issn0092-7872
dc.identifier.issn0092-7872-
dc.identifier.urihttps://doi.org/10.1080/00927872.2017.1327066
dc.identifier.urihttps://hdl.handle.net/11147/7531
dc.description.abstractRelative notions of flatness are introduced as a mean to gauge the extent of the flatness of any given module. Every module is thus endowed with a flatness domain and, for every ring, the collection of flatness domains of all of its modules is a lattice with respect to class inclusion. This lattice, the flatness profile of the ring, allows us, in particular, to focus on modules which have a smallest flatness domain (namely, one consisting of all regular modules.) We establish that such modules exist over arbitrary rings and we call them Rugged Modules. Rings all of whose (cyclic) modules are rugged are shown to be precisely the von Neumann regular rings. We consider rings without a flatness middle class (i.e., rings for which modules must be either flat or rugged.) We obtain that, over a right Noetherian ring every left module is rugged or flat if and only if every right module is poor or injective if and only if R = S×T, where S is semisimple Artinian and T is either Morita equivalent to a right PCI-domain, or T is right Artinian whose Jacobson radical properly contains no nonzero ideals. Character modules serve to bridge results about flatness and injectivity profiles; in particular, connections between rugged and poor modules are explored. If R is a ring whose regular left modules are semisimple, then a right module M is rugged if and only if its character left module M+ is poor. Rugged Abelian groups are fully characterized and shown to coincide precisely with injectively poor and projectively poor Abelian groups. Also, in order to get a feel for the class of rugged modules over an arbitrary ring, we consider the homological ubiquity of rugged modules in the category of all modules in terms of the feasibility of rugged precovers and covers for arbitrary modules.en_US
dc.description.sponsorshipSpanish Ministry of Economy & Competitiveness (MTM2014-54439-P); BAP 2016IYTE24en_US
dc.language.isoenen_US
dc.publisherTaylor and Francis Ltd.en_US
dc.relation.ispartofCommunications in Algebraen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectFlat profileen_US
dc.subjectFlatness domainen_US
dc.subjectRugged moduleen_US
dc.subjectModules (Algebra)en_US
dc.titleRugged modules: The opposite of flatnessen_US
dc.typeArticleen_US
dc.authorid0000-0003-2402-3496en_US
dc.institutionauthorBüyükaşık, Engin-
dc.institutionauthorKafkas Demirci, Gizem-
dc.departmentİzmir Institute of Technology. Mathematicsen_US
dc.identifier.volume46en_US
dc.identifier.issue2en_US
dc.identifier.startpage764en_US
dc.identifier.endpage779en_US
dc.identifier.wosWOS:000418083100023en_US
dc.identifier.scopus2-s2.0-85020535588en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1080/00927872.2017.1327066-
dc.relation.doi10.1080/00927872.2017.1327066en_US
dc.coverage.doi10.1080/00927872.2017.1327066en_US
dc.identifier.wosqualityQ3-
dc.identifier.scopusqualityQ2-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept04.02. Department of Mathematics-
Appears in Collections:Mathematics / Matematik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
7530.pdfMakale (Article)222 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

9
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

10
checked on Nov 16, 2024

Page view(s)

270
checked on Nov 18, 2024

Download(s)

306
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.