Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/7345
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOğuz, Damla-
dc.contributor.authorErgenç, Belgin-
dc.date.accessioned2019-11-11T13:21:19Z
dc.date.available2019-11-11T13:21:19Z
dc.date.issued2012en_US
dc.identifier.isbn978-364232583-0
dc.identifier.urihttps://doi.org/10.1007/978-3-642-32584-7_16
dc.identifier.urihttps://hdl.handle.net/11147/7345
dc.description14th International Conference on Data Warehousing and Knowledge Discovery, DaWaK 2012; Vienna; Austria; 3 September 2012 through 6 September 2012en_US
dc.description.abstractDatabases are updated continuously with increments and re-running the frequent itemset mining algorithms with every update is inefficient. Studies addressing incremental update problem generally propose incremental itemset mining methods based on Apriori and FP-Growth algorithms. Besides inheriting the disadvantages of base algorithms, incremental itemset mining has challenges such as handling i) increments without re-running the algorithm, ii) support changes, iii) new items and iv) addition/deletions in increments. In this paper, we focus on the solution of incremental update problem by proposing the Incremental Matrix Apriori Algorithm. It scans only new transactions, allows the change of minimum support and handles new items in the increments. The base algorithm Matrix Apriori works without candidate generation, scans database only twice and brings additional advantages. Performance studies show that Incremental Matrix Apriori provides speed-up between 41% and 92% while increment size is varied between 5% and 100%.en_US
dc.language.isoenen_US
dc.publisherSpringer Verlagen_US
dc.relation.ispartof14th International Conference on Data Warehousing and Knowledge Discovery, DaWaK 2012en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectIncremental itemset miningen_US
dc.subjectMatrix Apriorien_US
dc.subjectLearning algorithmsen_US
dc.titleIncremental itemset mining based on matrix Apriori algorithmen_US
dc.typeConference Objecten_US
dc.authorid0000-0001-6193-9853en_US
dc.institutionauthorOğuz, Damla-
dc.institutionauthorErgenç, Belgin-
dc.departmentİzmir Institute of Technology. Computer Engineeringen_US
dc.identifier.volume7448 LNCSen_US
dc.identifier.startpage192en_US
dc.identifier.endpage204en_US
dc.identifier.scopus2-s2.0-84866665272en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1007/978-3-642-32584-7_16-
dc.relation.doi10.1007/978-3-642-32584-7_16en_US
dc.coverage.doi10.1007/978-3-642-32584-7_16en_US
dc.identifier.wosqualityN/A-
dc.identifier.scopusqualityN/A-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeConference Object-
crisitem.author.dept03.04. Department of Computer Engineering-
crisitem.author.dept03.04. Department of Computer Engineering-
Appears in Collections:Computer Engineering / Bilgisayar Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
7345.pdfConference Paper268.08 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

12
checked on Nov 15, 2024

Page view(s)

294
checked on Nov 18, 2024

Download(s)

568
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.