Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/7113
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÖzuysal, Mustafa-
dc.date.accessioned2019-02-19T08:17:11Z-
dc.date.available2019-02-19T08:17:11Z-
dc.date.issued2018-
dc.identifier.citationÖzuysal, M. (2018 May 2-5). Ground texture classification with deep learning. Paper presented at the 26th IEEE Signal Processing and Communications Applications Conference, SIU 2018. doi:10.1109/SIU.2018.8404717en_US
dc.identifier.isbn9781538615010-
dc.identifier.urihttp://doi.org/10.1109/SIU.2018.8404717-
dc.identifier.urihttp://hdl.handle.net/11147/7113-
dc.description26th IEEE Signal Processing and Communications Applications Conference, SIU 2018; Altın Yunus Resort ve Thermal Hotel, Izmir; Turkey; 2 May 2018 through 5 May 2018en_US
dc.description.abstractBu çalışmada ImageNet veri setinde daha önceden eğitilmiş farklı mimarideki derin sinir ağlarının transfer öğrenmesi yolu ile zemin dokularının sınıflandırılması için kullanılması araştırılmıştır. Yedi farklı zeminden toplanan görüntüler ile yeni bir zemin dokusu veri seti oluşturulmuştur. Bu veri seti ile derin sinir ağları kısmen ya da mümkün olduğunda tüm katmanlarıyla yeniden eğitilmiştir. Sonuçlar küçük imgeler kullanıldığında bile zemin dokularının başarıyla sınıflandırıldığını göstermektedir.en_US
dc.description.abstractIn this study, we investigate the use of transfer learning on various deep neural network architectures pretained on the ImageNet data set for ground texture classification purposes. We introduce a new ground texture data set collected from seven different areas. We retrain deep neural network's last layer or when possible the full set of layers on this data set. The results show that it is possible to discriminate the ground textures even when very small images are used.en_US
dc.language.isotren_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof26th Signal Processing and Communications Applications Conference, SIU 2018en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectDeep neural networksen_US
dc.subjectTexture classificationen_US
dc.subjectTransfer learningen_US
dc.subjectData seten_US
dc.subjectDoku sınıflandırmaen_US
dc.subjectDerin sinir ağlarıen_US
dc.subjectTransfer öğrenmesien_US
dc.titleDerin öğrenme ile zemin dokusu sınıflandırmaen_US
dc.title.alternativeGround texture classification with deep learningen_US
dc.typeConference Objecten_US
dc.authoridTR21345en_US
dc.institutionauthorÖzuysal, Mustafa-
dc.departmentİzmir Institute of Technology. Computer Engineeringen_US
dc.identifier.scopus2-s2.0-85050824656en_US
dc.relation.publicationcategoryKonferans Öğesi - Ulusal - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1109/SIU.2018.8404717-
dc.relation.doi10.1109/SIU.2018.8404717en_US
dc.coverage.doi10.1109/SIU.2018.8404717en_US
dc.identifier.wosqualityN/A-
dc.identifier.scopusqualityN/A-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1tr-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeConference Object-
crisitem.author.dept03.04. Department of Computer Engineering-
Appears in Collections:Computer Engineering / Bilgisayar Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
7113.pdfConference Paper2.04 MBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

3
checked on Nov 15, 2024

Page view(s)

518
checked on Nov 18, 2024

Download(s)

304
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.