Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/7065
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSezerer, Erhan-
dc.contributor.authorPolatbilek, Ozan-
dc.contributor.authorSevgili, Özge-
dc.contributor.authorTekir, Selma-
dc.date.accessioned2018-12-25T06:47:46Z-
dc.date.available2018-12-25T06:47:46Z-
dc.date.issued2018-
dc.identifier.citationSezerer, E., Polatbilek, O., Sevgili, Ö., and Tekir, S. (2018, 10-14 September). Gender prediction from Tweets with convolutional neural networks: Notebook for PAN at CLEF 2018. In L. Cappellato, N. Ferro, J.-Y. Nie, and L. Soulier (Eds.), paper presented at the 19th Working Notes of CLEF Conference and Labs of the Evaluation Forum, CLEF 2018, Avignon, France.en_US
dc.identifier.issn1613-0073-
dc.identifier.urihttp://ceur-ws.org/Vol-2125/paper_116.pdf-
dc.identifier.urihttp://hdl.handle.net/11147/7065-
dc.description19th Working Notes of CLEF Conference and Labs of the Evaluation Forum, CLEF 2018; Avignon; France; 10 September 2018 through 14 September 2018en_US
dc.description.abstractThis paper presents a system1 developed for the author profiling task of PAN at CLEF 2018. The system utilizes style-based features to predict the gender information from the given tweets of each user. These features are automatically extracted by Convolutional Neural Networks (CNN). The system mainly depends on the idea that the informativeness of each tweet is not the same in terms of the gender of a user. Thus, the attention mechanism is included to the CNN outputs in order to discriminate the tweets carrying more information. Our architecture was able to obtain competitive results on three languages provided by the PAN 2018 author profiling challenge with an average accuracy of 75.1% on local runs and 70.23% on the submission run.en_US
dc.language.isoenen_US
dc.publisherCEUR Workshop Proceedingsen_US
dc.relation.ispartof19th Working Notes of CLEF Conference and Labs of the Evaluation Forum, CLEF 2018en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectNeural networksen_US
dc.subjectConvolutionen_US
dc.subjectConvolutional Neural Networksen_US
dc.titleGender prediction from Tweets with convolutional neural networks: Notebook for PAN at CLEF 2018en_US
dc.typeConference Objecten_US
dc.authoridTR114496en_US
dc.institutionauthorSezerer, Erhan-
dc.institutionauthorPolatbilek, Ozan-
dc.institutionauthorSevgili, Özge-
dc.institutionauthorTekir, Selma-
dc.departmentİzmir Institute of Technology. Computer Engineeringen_US
dc.identifier.volume2125en_US
dc.identifier.scopus2-s2.0-85051071655en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.wosqualityN/A-
dc.identifier.scopusqualityQ4-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeConference Object-
crisitem.author.dept03.04. Department of Computer Engineering-
crisitem.author.dept03.04. Department of Computer Engineering-
Appears in Collections:Computer Engineering / Bilgisayar Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
7065.pdfConference Paper334.46 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

6
checked on Nov 15, 2024

Page view(s)

912
checked on Nov 18, 2024

Download(s)

598
checked on Nov 18, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.