Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/6970
Title: | Discrete fractional integral operators and their relations to number theory | Other Titles: | Ayrık kesirli integral operatörleri ve sayılar teorisi ile ilişkileri | Authors: | Sert, Ezgi | Advisors: | Temur, Faruk | Keywords: | Number theory Fourier analysis Discrete fractional integral operators |
Publisher: | Izmir Institute of Technology | Source: | Sert, E. (2018). Discrete fractional integral operators and their relations to number theory. Unpublished master's thesis, Izmir Institute of Technology, Izmir, Turkey | Abstract: | The aim of this thesis is to get estimates on discrete fractional integral operators by
using number theory. These operators, starting with the studies of Arkipov and Oskolkov,
have been investigated for a long time. Fourier analysis and topics related to it have been
used in these studies. However, this study will put forward new results on these operators
with the help of arithmetic. Bu tezin amacı sayılar teorisini kullanarak ayrık kesirli integral operatörleri hakkında eşitsizlikler elde etmektir. Bu operatörler Arkipov ve Oskolkov’un çalışmalarından beri incelenmektedir. Fourier analizi ve ilgili konular bu çalışmalarda kullanılmaktadır. Ancak, bu çalışma aritmetiğin yardımıyla operatörler hakkında yeni sonuçlar elde edecektir. |
Description: | Thesis (Master)--Izmir Institute of Technology, Mathematics, Izmir, 2018 Includes bibliographical references (leaves: 45) Text in English; Abstract: Turkish and English |
URI: | http://hdl.handle.net/11147/6970 |
Appears in Collections: | Master Degree / Yüksek Lisans Tezleri |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
T001764.pdf | MasterThesis | 583.39 kB | Adobe PDF | View/Open |
CORE Recommender
Page view(s)
174
checked on Nov 18, 2024
Download(s)
86
checked on Nov 18, 2024
Google ScholarTM
Check
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.