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ABSTRACT

DISCRETE FRACTIONAL INTEGRAL OPERATORS AND THEIR

RELATIONS TO NUMBER THEORY

The aim of this thesis is to get estimates on discrete fractional integral operators by

using number theory. These operators, starting with the studies of Arkipov and Oskolkov,

have been investigated for a long time. Fourier analysis and topics related to it have been

used in these studies. However, this study will put forward new results on these operators

with the help of arithmetic.
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ÖZET

AYRIK KESİRLİ İNTEGRAL OPERATÖRLERİ VE SAYI

TEORİSİYLE İLİŞKİLERİ

Bu tezin amacı sayılar teorisini kullanarak ayrık kesirli integral operatörleri hak-

kında eşitsizlikler elde etmektir. Bu operatörler Arkipov ve Oskolkov’un çalışmalarından

beri incelenmektedir. Fourier analizi ve ilgili konular bu çalışmalarda kullanılmaktadır.

Ancak, bu çalışma aritmetiğin yardımıyla operatörler hakkında yeni sonuçlar elde ede-

cektir.
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CHAPTER 1

INTRODUCTION

Let f : Zl → C be a function and P : Zk+l → Zl a polynomial having integer

coefficients. Discrete fractional integral operator is defined by

Iλ f (n) =
∑
m∈Zk

∗

f (P(m, n))

|m|λk
, (1.1)

where Zk
∗ = Z

k − {0} and λ is positive. P(m, n) is called the phase polynomial of Iλ f (n).

We will consider integral binary quadratic forms as phase polynomials

q(m, n) = am2 + bmn + cn2. (1.2)

The discriminant of q is defined by Δ := b2−4ac. The form is called definite when Δ < 0,

and indefinite when Δ > 0. If Δ < 0 and a > 0, then we say that q is a positive definite

form. If the greatest common divisor of coefficients of q is 1, q is called primitive. We

say that k is represented by the form q when q(m, n) = k ∈ Z.

The main idea of this thesis is that we want to obtain estimates on certain dis-

crete fractional integral operators by using number theory, and thus develop the theory of

discrete fractional integrals.

We state our theorems for both positive definite forms and indefinite forms, but

their proofs will be shown in chapter 5 and chapter 6.

Theorem 1.1 Let f ∈ lp(Z) where 1 ≤ p ≤ ∞ and q a positive definite integral binary

quadratic form with discriminant Δ. Then the operator

Iλ f (n) =
∑
m∈Z∗

f (q(m, n))

|m|λ

satisfies ‖Iλ f ‖p ≤ Cp,λ,Δ‖ f ‖p. It is valid for λ > 1 − 1
p when p is finite, and it is available

for λ > 1 when p is infinite. It follows from this result that we have a sharpness part in
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the following sense.

• For p = 1 and r ∈ N, there is a form q and a function f such that ‖Ilogr f ‖1 = ∞,

where

Ilogr f (n) =
∑
m∈Z∗

f (q(m, n))

logr(1 + |m|)

• For 1 < p < ∞, there is a form q and a function f such that ‖Iλ f ‖p = ∞, where

λ = 1 − 1
p .

• For p = ∞, there is a form q and a function f such that ‖Iλ f ‖∞ = ∞, where λ = 1.

Theorem 1.2 Let f ∈ lp(Z) where 1 ≤ p ≤ ∞ and q an indefinite integral binary

quadratic form with non-square discriminant Δ. Then the operator

Iλ f (n) =
∑
m∈Z∗

f (q(m, n))

|m|λ

satisfies ‖Iλ f ‖p ≤ Cp,λ,Δ‖ f ‖p. It is valid for λ > 1 − 1
p when p is finite, and it is available

for λ > 1 when p is infinite. It follows from this result that we have a sharpness part in

the following sense.

• For p = 1 and r ∈ N, there is a form q and a function f such that ‖Ilogr f ‖1 = ∞,

where

Ilogr f (n) =
∑
m∈Z∗

f (q(m, n))

logr(1 + |m|)

• For 1 < p < ∞, there is a form q and a function f such that ‖Iλ f ‖p = ∞, where

λ = 1 − 1
p .

• For p = ∞, there is a form q and a function f such that ‖Iλ f ‖∞ = ∞, where λ = 1.

In chapter 2, we briefly summarize the history of discrete analogues in harmonic

analysis within the context of singular integrals, before dealing with the theory of discrete

fractional integral operators by using number theory. We define the notation and termi-

nology that will be used later. We state some essential results concerning these operators
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proved by Arkipov and Oskolkov, Stein, Wainger, Oberlin and Ionescu. After giving in-

formation on the general idea of these operators, we concentrate on our main operator

Iλ f (n). We explain the reason why we study the number theory of the representation of

an integer by a polynomial instead of using methods of the previous works. We prove

that Theorem 1.2 fails when the discriminant is a square number, and that our results are

sharp.

In chapter 3, we are concerned with the representation problem over the field of

real numbers. This study is of great importance to understand the structure of binary

quadratic forms over the ring of integers. We divide this study into two parts: first we

study positive definite quadratic forms, and then indefinite quadratic forms of non-square

discriminant. In both cases, we study the curves obtained from the solutions of these

quadratic forms to prove a lemma about the distribution of representations of integers.

These results will be useful for our main theorems.

In chapter 4, we deal with the number theory of quadratic forms by utilizing results

uncovered by Gauss, Dirichlet, Jacobi and Pall. We want to understand the set of all

representations of integer k by the form q defined by

Rk := {(m, n) ∈ Z2 : q(m, n) = k}.

To prove our main theorems, we need to find an upper bound on the cardinality of Rk.

We will focus on obtaining this bound. Therefore, we explain how the number theoretical

information is extracted and how to get estimates on the sets Rk.

In chapter 5, Theorem 1.1 will be proved with the help of the analytic, geometric

and arithmetic information about positive definite forms. Furthermore, we give certain

forms and certain functions that will serve as counterexamples for the sharpness parts of

the Theorem 1.1.

In chapter 6, Theorem 1.2 will be shown by using the ideas and results obtained

from chapter 2 and chapter 3. We start with the specific case in which q = [a, b, c] is

primitive and b = 0. Then, we investigate any indefinite form. Moreover, we describe our

counterexamples for the sharpness parts of the Theorem 1.2.

In Conclusion, we give the main points of our new results obtained in this thesis.
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CHAPTER 2

PRELIMINARIES

In this chapter, we briefly explain the history of discrete analogues in harmonic

analysis by summarizing the history of singular integrals, before understanding the theory

of discrete fractional integral operators with the help of arithmetic. These discrete opera-

tors have been studied as analogues of their continuous counterparts for almost a century.

First of all, M. Riesz showed that the Hilbert transform

H f (x) = p.v.
1

π

∫
R

f (x − t)
t

dt = lim
ε→0

∫
|t|>ε

f (x − t)
t

dt

is bounded on lp(R) for all 1 < p < ∞. Riesz also proved that the boundedness of the

Hilbert transform gives rise to the boundedness of its discrete analogue

H f (n) =
∑
m∈Z∗

f (n − m)

m

on lp(Z) for all 1 < p < ∞ where Zk
∗ = Z

k − {0}.

Definition 2.1 K : Rn − {0} → C is called a Calderon-Zygmund kernel if the following

conditions are satisfied:

1. |K(x)| ≤ C|x|−n for some C ∈ R. (size condition)

2.
∫

r<|x|<R
K(x)dx = 0 for all 0 < r < R < ∞. (cancellation condition)

3.
∫
|x|>y
|K(x−y)−K(x)|dx ≤ C when |y| > 0 and a fixed C. (Hörmander condition)

Calderon and Zygmund extended the Riesz’s works. They proved that

T f (x) = p.v.
∫
Rk

f (x − y)K(y)dt,

where K is the Calderon-Zygmund kernel, is a bounded operator on lp(Rk) for all 1 < p <

∞. As a result of this, they showed that the discrete analogue

4



T f (n) =
∑
m∈Zk

∗

f (n − m)K(m),

is also bounded with the same range. The maximal function, which is the largest average

over sets belonging to given collection, is an essential operator for harmonic analysis

subjects such as the existence almost everywhere of limits and the differentiability of

functions. One of the most significant of maximal functions is the Hardy-Littlewood

maximal function defined by

M f (x) = sup
1

V(Br)

∫
|y|<r
| f (x − y))|dy,

where V(Br) is the volume of the ball Br with radius r in Rk. As for its discrete analogue,

M f (n) = sup
1

#Br

∑
|m|<r

| f (n − m))|,

where #Br is the number of integer lattice points in the ball Br [1]. After looking at these

operators from historical point of view, we can investigate our main operator.

We let f be a function from Zl to C and P : Zk+l → Zl a polynomial having integer

coefficients. Discrete fractional integral operator is defined by

Iλ f (n) =
∑
m∈Zk

∗

f (P(m, n))

|m|λk
,

where λ is positive. P(m, n) is called the phase polynomial of Iλ f (n). When the phase

polynomial is n − m, this operator, as far as boundedness is concerned, is the same as its

continuous counterpart. For the continuous analogue boundedness is given by the Hardy-

Littlewood-Sobolev theorem. This theorem states that

τλ f (x) =

∫
Rk

f (x − y)

| y |kλ
dy

is a bounded operator from lp(Rk) to lq(Rk) for all 1 < p < q < ∞ and 0 < λ < 1 with

1
q =

1
p − (1 − λ). For its discrete analogue,
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τλ f (n) =
∑
m∈Zk

∗

f (n − m)

| m |kλ

τλ is bounded for all 1 < p < q < ∞ with 1
q ≤

1
p − (1 − λ). This τλ is the simplest discrete

fractional operator. However, when P(m, n) is of a higher degree, it will be seen that the

boundedness properties for the discrete analogues may hold for a larger range.

We now turn to discrete singular Radon transforms defined by

R f (n) =
∑
m∈Zk

∗

f (P(m, n))K(m). (2.1)

Arkipov and Oskolkov were the first to study these operators. The operators at issue have

been investigated over the last 30 years. If the phase polynomial is n − Q(m) where Q

is a polynomial from Zk to Zl, then this operator is called translation invariant. In that

case, operator commutes with translation as follows. Let us define our translation operator

Tk f = g(n) = f (n+k) for some functions g and f translated by k. For commutativity with

translation, we need to show that RTk f = TkR f .

RTk f = Rg =
∑
m∈Zk

∗

g(n − m)K(m)

=
∑
m∈Zk

∗

f ((n + k) − m)K(m)

= R f (n + k)

= TkR f .

Translation invariant case is studied by Fourier multipliers, and significant progress

has been made using this technique. We have an example for this case, which firstly

was investigated by Arkipov and Oskolkov in [2]. They found that if in (2.1) we have

m ∈ Z∗,K(m) = 1/m, P(m, n) = n−Q(m), and then if we regard n as a continuous variable

in R, then taking the Fourier transform

R̂ f (ξ) =
∑
m∈Z∗

f̂ (ξ)e−2πiQ(m)ξ

m

= f̂ (ξ)
∑
m∈Z∗

e−2πiQ(m)ξ

m
(2.2)

6



The term given by the sum is called a multiplier in Fourier analysis. It acts on a function

by changing its Fourier transform. For example, translation operator is a multiplier. The

multiplier in (2.2) is l∞(Z), and thus R f (n) is bounded on l2(Z) as shown [2]. We give

some important results obtained on the operators as the following:

• Stein and Wainger [3, 4], Oberlin [5] and Ionescu and Wainger [6] proved that

Iλ: lp(Z)→ lq(Z) is bounded for 0 < λ < 1 and P(m, n) = n − m2 if and only if

p, q satisfy

1

q
≤

1

p
−

1

2
(1 − λ),

1

q
< λ,

1

p
> (1 − λ)

• Ionescu and Wainger [6] showed that R f (n) is a bounded operator on lp(Zk) for all

1 < p < ∞ if P(m, n) = n − Q(m).

• When P(m, n) = n − ms with s > 2, sharp results are not available for Iλ.

We will develop the theory of certain discrete fractional integral operators, which were

not considered in these works. We shall consider binary quadratic forms over the ring of

integers

q(m, n) = am2 + bmn + cn2.

When q(m, n) = k for some integer k, we say that k is represented by the form q. The set

of all representations of k by q is defined by

Rk := {(m, n) ∈ Z2 : q(m, n) = k}. (2.3)

When considering the same form q over the real numbers, we will utilize the set

S w := {(x, y) ∈ R2 : q(x, y) = w}. (2.4)

The discriminant of q is Δ = b2−4ac. If Δ < 0, q is called a definite form. It takes positive

and negative values if Δ > 0. Such forms are called indefinite. When Δ is negative, it

7



is obvious that ac is positive. It can be concluded that a and c have the same sign. We

observe that

ax2 + bxy + cy2 = w ⇐⇒ 4a2x2 + 4abxy + 4acy2 = 4aw, (2.5)

and completing of squares gives

4aw = 4a2x2 + 4abxy + 4acy2 = (2ax + by)2 − Δy2. (2.6)

Similarly, this can be done for the same form by multiplying both sides by 4c. It follows

from (2.6) that the values that definite forms take have the sign of a. If Δ < 0 and a > 0,

then the form is nonnegative for any m and n. Such forms are called positive definite

forms. If Δ < 0 and a < 0, then these forms are called negative definite forms.

A form q is called primitive if the greatest common divisor of the coefficients of

q is 1. If m and n are coprime, then (m, n) is called a proper representation of k. If m

and n are not coprime, then it is called an improper representation. With the help of the

coprimality, we can find remarkable results which enable us to understand the structure

of proper representations. Therefore, we define the set of all proper representations of k

by q

R′k := {(m, n) ∈ Z2 : q(m, n) = k and gcd(m, n) = 1}. (2.7)

We will use the notation #A which denotes the cardinality of the set A.

We prove that Theorem 1.2 fails when Δ is a square discriminant. To see this, let

q(m, n) be a form with square discriminant. That is to say, Δ = d2, d ∈ N ∪ {0}. When

c � 0, (2c j, (−b ± d j)) ∈ Z2 for any j ∈ Z. If we plug them into q, then the results will be

0. Hence, we consider a function

f (k) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if k is 0

0 if k is not 0.
(2.8)

When we take the l1(Z) norm of Iλ f

8



‖Iλ f ‖l1(Z) =
∑
n∈Z

∣∣∣∣∣∣∣
∑
m∈Z∗

f (q(m, n))

|m|λ

∣∣∣∣∣∣∣
=

∑
n∈Z

∑
m∈Z∗

f (q(m, n))

|m|λ

≥
∑
j∈Z∗

f (q(2c j, (−b ± d) j))
|2c j|λ

=
∑
j∈Z∗

1

|2c j|λ
,

and the last sum is clearly divergent for λ ≤ 1. When c = 0, we have q(m, n) = am2+bmn

and (b j,−a j) ∈ Z2 for all j ∈ Z. If we plug them into q, we will have 0. We assume b � 0

with f as in (2.8). Then

‖Iλ f ‖l1(Z) =
∑
n∈Z

∑
m∈Z∗

f (q(m, n))

|m|λ

≥
∑
j∈Z∗

f (q(b j,−a j))
|2b j|λ

≥
∑
j∈Z∗

1

|2b j|λ
,

and this result diverges for λ ≤ 1. When b and c are both zero, we have a � 0 and

q(m, n) = am2. In that case, we consider

f (k) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if k is a

0 if k is not a,

and use the points (1, j) for all j ∈ Z. We obtain

‖Iλ f ‖l1(Z) =
∑
n∈Z

∑
m∈Z∗

f (q(m, n))

|m|λ

≥
∑
j∈Z∗

f (q(1, j))
1λ

.

The last sum diverges as every summand has the same value 1. We will investigate l1(Z)

estimates to understand our main theorems. Let f be a function in l1(Z), and

9



Iλ f (n) =
∑
m∈Z∗

f (q(m, n)

|m|λ

be our operator with any quadratic form q(m, n) = am2 + bmn + cn2. When we calculate

l1(Z) norm of Iλ f , we get

‖Iλ f ‖l1(Z) =
∑
n∈Z

∣∣∣∣∣∣∣
∑
m∈Z∗

f (q(m, n))

|m|λ

∣∣∣∣∣∣∣ ≤
∑
n∈Z

∑
m∈Z∗

| f (q(m, n))|
|m|λ

.

We consider the sets Ak := {(m, n) ∈ Z∗ × Z : q(m, n) = k} for each k ∈ Z. These sets

give us a partition of Z∗ × Z. Each element of Z∗ × Z is in one of these sets Ak, and if k is

different from l, then the sets Ak ∩ Al are empty. Consequently,

=
∑

(m,n)∈Z∗×Z

| f (q(m, n))|
|m|λ

=
∑
k∈Z

| f (k)|

⎛⎜⎜⎜⎜⎜⎜⎝ ∑
(m,n)∈Ak

1

|m|λ

⎞⎟⎟⎟⎟⎟⎟⎠ .

Since f ∈ l1(Z), if we could prove that

∑
(m,n)∈Ak

1

|m|λ
≤ C,

where C is a constant not depending on k, we would get the estimate

‖Iλ f ‖l1(Z) ≤ C‖ f ‖l1(Z).

Hence, l1(Z) estimates motivate us to study the quantity

∑
(m,n)∈Ak

1

|m|λ
. (2.9)

This quantity obviously concerns the number of representations of k by q, and the struc-

ture and distribution of these representations. When the number of representations of k

is small, the last sum will be bounded by a constant. This case will be used to prove

10



Theorem 1.1. On the other hand, when it is large or infinite, we will observe that the first

coordinates of these representations increase fast. We will prove Theorem 1.2 by using

this.
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CHAPTER 3

GEOMETRY AND ANALYSIS OF BINARY QUADRATIC

FORMS

In this part, we will concentrate on the representation problem over the field of

real numbers. This study helps us understand the structure of binary quadratic forms over

the ring of integers. We will consider the set S w as defined by (2.4). This investigation

gives rise to different results for positive definite forms and indefinite forms. We therefore

investigate them separately.

3.1. Positive definite forms

In this section, we suppose that q(x, y) = ax2 + bxy + cy2 is positive definite. This

means that a, c are positive and −2
√

ac < b < 2
√

ac. Needless to say, q(x, y) = w is

an ellipse that is centered at the origin. Since we have 4aw = (2ax + by)2 − Δy2 from

chapter 1, the set S w is empty when w is negative. When w = 0, the set has only the

origin. We therefore suppose that w is positive. We observe that S w always includes the

points (±
√

w/a, 0), (0,±
√

w/c) whatever the value of b is. We will see that the 4 lines

passing through these points with slopes ±
√

a/c determine the behavior of S w to a great

extent. Although it is well-known that the ellipse encloses a convex region, we want

to demonstrate this. Therefore, we want to prove that the region (x, y) : q(x, y) ≤ w is

convex. Let (x1, y1), (x2, y2) be in this region, and let z1 = 2ax1 + by1, z2 = 2ax2 + by2.

Then z2
i − Δy2

i ≤ 4aw, i = 1, 2. Let 0 < r < 1, and (x3, y3) = r(x1, y1) + (1 − r)(x2, y2). If

we let z3 = 2ax3 + by3, then z3 = rz1 + (1 − r)z2. Then we obtain

z2
3 − Δy2

3 = (rz1 + (1 − r)z2)2 − Δ(ry1 + (1 − r)y2)2

= r2(z2
1 − Δy2

1) + (1 − r)2(z2
2 − Δy2

2)

+ 2r(1 − r)(z1z2 − Δy1y2)

≤ 4aw(r2 + (1 − r)2) + r(1 − r)(z2
1 + z2

2 − Δ(y2
1 + y2

2)

= 4aw.

12



This, as stated above, implies q(x3, y3) ≤ w. Thus S w is the curve bounding this convex

region. By convexity, the region contains the parallelogram with vertices (±
√

w/a, 0) and

(0,±
√

w/c). The gradient of q is 0 when (x, y) is the origin which is not an element of

S w. This implies that S w is a smooth plane curve for w > 0. We now want to write it as

graphs of functions. We can solve the equation ax2 + bxy + cy2 = w for y if and only if

x2 ≤ −4cw/Δ holds, and we have two functions

y = f1(x) =
−bx +

√
Δx2 + 4cw
2c

, y = f2(x) =
−bx −

√
Δx2 + 4cw
2c

.

It follows from the second derivative test that f1 is concave and f2 is convex. We can find

dy/dx and dx/dy using implicit differentiation and setting these equal to zero allows us to

find elements (x, y) of S w for which x or y takes extremal values. We see that

dy
dx
= −

2ax + by
bx + 2cy

,
dx
dy
= −

2cy + bx
by + 2ax

.

Setting these equal to zero we obtain the lines with slopes −2a/b and −b/2c. Thus the

extremal values are attained when these lines intersect the curve S w. We observe that for

b = 0 these are the coordinate lines just as expected, and as b ↑ 2
√

ac, or b ↓ −2
√

ac they

get closer to each other, until at the limit they have slopes −
√

a/c and
√

a/c respectively.

Let b < 0. The points of S w on the line y =
√

a/cx satisfy ax2+b
√

a/cx2+ax2 = w, which

implies x2 = w(2a + b
√

a/c)−1. As b decreases to −2
√

ac, x2 increases to infinity, and

therefore y2 increases to infinity. On the other hand points on the line y = −
√

c/ax satisfy

x2 = w(a − b
√

c/a + c2/a)−1, and as b decreases to −2
√

ac, x2 decreases to wa/(a + c)2,

and y2 decreases to wc/(a + c)2. Thus decreasing b to −2
√

ac lengthens the set S w in the

direction of the line y =
√

a/cx, and shortens it in the direction of the line y = −
√

c/ax.

Performing the same analysis for the case b > 0 shows that increasing b to 2
√

ac lengthens

the set S w in the direction of the line y = −
√

a/cx, and shortens it in the direction of the

line y =
√

c/ax.

An arbitrary line in R2 has an equation either of the form y = ux + v or x = uy + v

where u, v ∈ R. When we plug x and y into ax2 + bxy + cy2 = w, we obtain respectively

x2(cu2 + bu + a) + x(2cuv + bv) + cv2 = w,

y2(au2 + bu + c) + y(2auv + bv) + av2 = w.
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Since we investigate Δ < 0, (cu2 + bu + a) and (au2 + bu + c) cannot be zero. Thus, we

have at most 2 different (x, y) for each of these equations. That is, S w can be intersected

by a line at at most two points.

Lemma 3.1 Let q(x, y) = ax2 + bxy + cy2 be a positive definite binary quadratic form,

and let w be an integer. Then q(x, y) = w has at most 4 solutions (x, y) ∈ Z2 satisfying

|x| ≤
|w|1/4
√
−Δ
. (3.1)

Proof We want to obtain the solutions on the curve S w defined by graphs of functions

y = f1(x) =
−bx +

√
Δx2 + 4cw
2c

, y = f2(x) =
−bx −

√
Δx2 + 4cw
2c

for x2 ≤ −4cw/Δ. Any of them can be located on only one of these graphs. We observe

that the lines

l1(x) = −
b
2c

x +
√

m
c
, l2(x) = −

b
2c

x −
√

m
c

are tangent to f1 at
√

w/c and f2 at −
√

w/c. We will show that they remain close to l1(x)

and l2(x). When we look at the differences between f1(x), f2(x), and these lines for x

satisfying (3.1), we can obtain the following:

√
w
c
−
√
Δx2 + 4cw

2c
=

(w
c

)1/2
−

(Δx2

4c2
+

w
c

)1/2

=
(Δx2

4c2

)[(Δx2

4c2
+

w
c

)1/2
+

(w
c

)1/2]−1

≤
(
−
Δx2

4c2

)[3

2

(w
c

)1/2]−1

=
−Δx2

6c3/2w1/2

≤
1

6c3/2
.

It is understood from inequality that we can get these solutions satisfying y = f1(x) lie

inside the set

S 1 =
{
(x, y) ∈ R2 : |x| ≤

|w|1/4
√
−Δ
, |y − (−

b
2c

x +
√

w
c

)| ≤
1

6c3/2

}
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and y = f2(x) lie inside the set

S 2 =
{
(x, y) ∈ R2 : |x| ≤

|w|1/4
√
−Δ
, |y − (−

b
2c

x −
√

w
c

)| ≤
1

6c3/2

}
.

But, when (x, y) is in Z2, 2cy + bx = n is clearly in Z. Hence, we can find n as

y = −
b
2c

x +
n
2c
.

Therefore, when considering the set of parallel lines

{
(x, y) ∈ R : y = −

b
2c

x +
n
2c

}
,

each member (x, y) in Z2 is contained on exactly one of these lines. However, we have at

most one such line in each of the sets S 1 and S 2. Therefore, we conclude that there are at

most 4 solutions. �

3.2. Indefinite forms of non-square discriminant

We suppose that q(x, y) = ax2 + bxy+ cy2 is indefinite of non-square discriminant.

We thus have a � 0 and c � 0. We shall suppose c > 0 and analyze the set S w for each

w. The case c < 0 follows by multiplying both sides -1. The sign of w plays an important

role to understand the geometry of the set S w.

Suppose that w = 0. Then q(x, y) = ax2 + bxy + cy2 = 0 has the solutions

y = l1(x) =
−b +

√
Δ

2c
x, y = l2(x) =

−b −
√
Δ

2c
x. (3.2)

Hence, S w has two lines passing through the origin. When considering the simple case

b = 0, slopes obviously become ±
√
Δ

2c = ±
√
|ac |, which are additive inverses of each other.

If b < 0, the directions of l1(x) and l2(x) will turn counterclockwise as b → −∞. On the

other hand, if b > 0, the directions of l1(x) and l2(x) will turn clockwise as b → ∞. We

observe that these lines determine the graphs of the set S w even when w is nonzero.
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Suppose that w > 0. It is known that the set S w forms a hyperbola centered at the

origin, and clearly is a smooth plane curve. Then q(x, y) = ax2 + bxy + cy2 = w has the

solutions

y = f1(x) =
−bx +

√
Δx2 + 4cw
2c

, y = f2(x) =
−bx −

√
Δx2 + 4cw
2c

. (3.3)

Since we have cw > 0, our functions are well-defined and also smooth for every x ∈ R.

It follows from the second derivative test that f1(x) is convex and f2(x) is concave. When

x > 0, we obtain f1(x) > l1(x), f2(x) < l2(x), and when x ≤ 0, we get f1(x) > l2(x),

f2(x) < l1(x) similarly.

Since we have

√
Δx2 + 4cw −

√
Δx2 = 4cw

(√
Δx2 + 4cw +

√
Δx2

)−1
(3.4)

the difference
√
Δx2 + 4cw −

√
Δx2 will be zero when x2 → ∞. This result means that

as x → ∞ we get f1(x) − l1(x) goes to 0, f2(x) − l2(x) goes to 0, and as x → −∞ we get

f1(x) − l2(x) goes to zero 0, f2(x) − l1(x) goes to 0.

Suppose that w < 0. Then q(x, y) = ax2+bxy+ cy2 = 0 can be solved with respect

to y if and only if x2 < −4cw/Δ, and solutions are

y = g1(x) =
−bx +

√
Δx2 + 4cw
2c

, y = g2(x) =
−bx −

√
Δx2 + 4cw
2c

.

It can be seen that g1(x) and g2(x) intersect only when x2 = −4cw/Δ. If x > 0, we get

l2(x) < g2(x) ≤ g1(x) < l1(x) and if x < 0, we get l1(x) < g2(x) ≤ g1(x) < l2(x). Because

of (3.4), when x → ∞ we get g1(x) − l1(x) → 0, g2(x) − l2(x) → 0, and when x → −∞
we get g1(x) − l2(x) → 0, g2(x) − l1(x) → 0. With second derivative test we see that g1

is convex and g2 is concave for x >
√
−4cw/Δ, and g2 is convex and g1 is concave for

x < −
√
−4cw/Δ. Then q(x, y) = ax2 + bxy + cy2 = 0 has the solutions

x = h1(y) =
−by +

√
Δy2 + 4aw
2a

, x = h2(y) =
−by −

√
Δy2 + 4aw
2a

.
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Lemma 3.2 Let q(x, y) = ax2+bxy+cy2 be an indefinite form of non-square discriminant,

and let w be an integer. Then q(x, y) = w has at most 4 solutions (x, y) ∈ Z2 satisfying

|x| ≤
|w|1/4
√
Δ
. (3.5)

Proof We first assume w = 0. In this case the solution (x, y) ∈ Z2 we are looking for

must satisfy y = l1(x) = −b+
√
Δ

2c x and y = l2(x) = −b−
√
Δ

2c x, but since Δ is non-square, the

only element of Z2 satisfying these lines is the origin. So there is only 1 solution in this

case.

We suppose w > 0. Then solutions are located on the graphs of functions

y = f ′1(x) =
−bx +

√
Δx2 + 4cw
2c

, y = f ′2(x) =
−bx −

√
Δx2 + 4cw
2c

,

and every solution can be only located on one of these graphs since our graphs do not

intersect. The lines

y = l′1(x) = −
b
2c

x +
√

w
c
, y = l′2(x) = −

b
2c

x −
√

w
c
,

are tangent to f ′1 at
√

m/c, f ′2 at −
√

m/c. We will show that they stay close to f ′1, f ′2 for x

satisfying (3.5). When we look at the differences between f ′1(x), f ′2(x) and these lines for

x satisfying (3.5), we can obtain a similar result as in Lemma 3.1

√
Δx2 + 4cw

2c
−

√
w
c
≤

1

8c3/2
.

This result enables us to consider the problem to the number of intersections S w. There-

fore, we can have at most 4 solutions with two lines.

We suppose w < 0. In that case we have x2 ≥ −4cw/Δ. However, this gives rise

to a contradiction due to our assumption Lemma 3.2. Thus, we have no solution. �
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CHAPTER 4

ARITHMETIC OF QUADRATIC FORMS

We now want to understand the set Rk. Having understood that proving our the-

orems require finding an upper bound on the cardinality of Rk, we will concentrate upon

finding such a bound. In the 19th and early 20th century, Gauss, Dirichlet, Pall and others

made great contributions to this topic by using the theory of quadratic residues and the

number of automorphs of q. In this chapter we will explain how this relation is estab-

lished, and how to obtain an estimate on Rk.

We suppose that q(m, n) = ax2 + bxy + cy2 is a binary quadratic form. This form

can be expressed as q = [a, b, c] and written as a matrix

[q] :=

⎡⎢⎢⎢⎢⎢⎢⎣2a b

b 2c

⎤⎥⎥⎥⎥⎥⎥⎦ .

Then we can easily get Δ = − det
[
q
]
. Let us consider a linear transformation

m = αM + βN, n = γM + δN. (4.1)

Indeed, we can write this transformation as a matrix

⎡⎢⎢⎢⎢⎢⎢⎣mn
⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣α β
γ δ

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣M

N

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where α, β, γ, and δ are integers with αδ − βγ � 0. Then q(m, n) is transformed into

Q(M,N) = AM2 + BMN +CN2, (4.2)

where A = aα2 + bαγ + cγ2, B = 2aαβ + b(αδ + βγ) + 2cγδ, C = aβ2 + bβδ + cδ2. We

will denote this transformation by T . Hence, we get Tq = Q.
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Two quadratic forms q and Q are called equivalent if one of them can be changed

to the other by a linear transformation of the form m = αM + βN, n = γM + δN,

where α, β, γ, and δ are integers satisfying αδ − βγ = ±1. When the determinant of this

matrix is 1, we will say that two equivalent forms are properly equivalent. Otherwise,

they are called improperly equivalent. For both cases, since we have q(m, n) = q(αM +

βN, γM+δN) = Q(M,N), this implies that q and Q represent the same integers. Equivalent

forms are denoted by the symbol ”∼”. In this thesis, we will merely concentrate on

properly equivalent forms. We sometimes say equivalent forms instead of saying properly

equivalent forms. Furthermore, proper equivalence is an equivalence relation. To see this,

we let α = δ = 1 and γ = β = 0. For a reflexive relation,

⎛⎜⎜⎜⎜⎜⎜⎝ m

n

⎞⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎝ 1 0

0 1

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝ M

N

⎞⎟⎟⎟⎟⎟⎟⎠ .

To get symmetry,

⎛⎜⎜⎜⎜⎜⎜⎝ m

n

⎞⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎝ α β
γ δ

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝ M

N

⎞⎟⎟⎟⎟⎟⎟⎠

transforms q into Q. Then

⎛⎜⎜⎜⎜⎜⎜⎝ M

N

⎞⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎝ δ −β
−γ α

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝ m

n

⎞⎟⎟⎟⎟⎟⎟⎠

transforms Q into q.

To see transitivity, if

⎛⎜⎜⎜⎜⎜⎜⎝ M

N

⎞⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎝ η θ
ς τ

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝ m′′

n′′

⎞⎟⎟⎟⎟⎟⎟⎠

then transforms Q to Q′, and then
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⎛⎜⎜⎜⎜⎜⎜⎝ m

n

⎞⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎝ α β
γ δ

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝ η θ
ς τ

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝ m′′

n′′

⎞⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎝ αη + βς αθ + βτ
γη + δς γθ + δτ

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝ m′′

n′′

⎞⎟⎟⎟⎟⎟⎟⎠

transforms q to Q′. Therefore, proper equivalance relation gives partition forms into

equivalence class when a discriminant is given [7].

When we want to find all integer solutions of m2 + n2 = 5, we will see that this

form is equivalent to 5m2 + 6mn + 2n2 = 5, which comes from the transformation

[T ] =

⎡⎢⎢⎢⎢⎢⎢⎣2 1

1 1

⎤⎥⎥⎥⎥⎥⎥⎦ .

In the same way, we can find infinitely many forms which are equivalent to m2 + n2. This

example illustrates the reason why we investigate transformations and equivalent forms.

We can easily calculate that

[Q] = [T ]∗[q][T ]

where [T ]∗ is the transpose of [T ]. The determinant of Q = (2aαβ+ bαδ+ bγβ+ 2cγδ)2 −
4(aα2 + bαγ + cγ2)(aβ2 + bβδ+ cδ2) = (b2 − 4ac)(αδ− βγ)2 = b2 − 4ac is the same as the

determinant of q.

We consider another matrix [S ] that also has determinant 1, and transforms q to

Q. Then the inverse matrix [S ]−1 must transform Q to q, and so

[q] = [S ]−1∗[Q][S ]−1 = [S ]−1∗[T ]∗[q][T ][S ]−1 = ([T ][S ]−1)∗[q][T ][S ]−1.

If a matrix which has determinant 1 leaves q unchanged, it is called an automorph of

this form. Thus, [T ][S ]−1 is an automorph of q. Let us denote [A] := [T ][S ]−1. When

[A] is multiplied from the right hand side by [S ], we get [T ]. Therefore, when we obtain

a matrix which transforms q to an equivalent form Q, and multiply that matrix with the

automorphs of q, we will find all matrices which have determinant 1 and transform q to

Q.

On the one hand, we observe that if gcd(m, n) = g, and q(m, n) = k for some g ∈ N
and k ∈ Z, then we will get gcd(m/g, n/g) = 1, and q(m/g, n/g) = k/g2. On the other hand,
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if gcd(m, n) = 1 with q(m, n) = k/g2, then we have gcd(mg, ng) = g and q(mg, ng) = k.

Improper representations of k with the greatest common divisor g are mapped bijectively

to proper representations of k/g2. In other words, this (m, n) �→ (m/g, n/g) is a bijective

map from the proper representations of k/g2 to improper representations of k with the

greatest common divisor g. Hence, when k � 0, we have

Rk =
⋃
g2 |k

g · R′k/g2 . (4.3)

When k = 0, the set Rk contains the union in (4.3) and (0, 0).

We suppose k � 0 and investigate the structure of the proper representations R′k.

When we have a pair (α, γ) satisfying q(α, γ) = k and gcd(α, γ) = 1, we will get a pair

β, δ satisfying αδ − γβ = 1. This relation comes from the property of coprimality. If we

choose another pair β′, δ′ satisfying the same condition, then we get αδ − γβ = αδ′ − γβ′.
We take common parenthesis α(δ′ − δ) = γ(β′ − β). Since α and γ are coprime, either α

or γ is nonzero. Suppose that α � 0. It follows from the property of divisibility that α

divides β′ − β. Thus, we write β′ = β + tα for some unique integer t. This gives rise to

α(δ′ − δ) = γtα, and since α � 0, we obtain δ′ = δ + tγ. If γ � 0, we will get a unique

integer t for the case α and γ such that

β′ = β + tα, δ′ = δ + tγ. (4.4)

On the other hand, for any integer t, we get unique β′ and δ′ written above and they also

satisfy αδ′ − γβ′ = 1. Then we have the matrix

⎡⎢⎢⎢⎢⎢⎢⎣α β
γ δ

⎤⎥⎥⎥⎥⎥⎥⎦

which has determinant 1, and transforms q to an equivalent form Q = [k, u, v], where

k = aα2 + bαγ + cγ2, u = 2aαβ + b(αδ + βγ) + 2cγδ, v = aβ2 + bβδ + cδ2. (4.5)

Conversely, the matrix
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⎡⎢⎢⎢⎢⎢⎢⎣α β′
γ δ′

⎤⎥⎥⎥⎥⎥⎥⎦

transforms q into the form [k, u′, v′] satisfying

u′ = 2aαβ′ + b(αδ′ + β′γ) + 2cγδ′, v′ = a(β′)2 + bβ′δ′ + c(δ′)2. (4.6)

When we write β + tα, δ + tγ instead of β′, δ′ respectively, we have

u′ = 2aαβ′ + b(αδ′ + β′γ) + 2cγδ′

= 2aα(β + tα) + b[α(δ + tγ) + (β + tα)γ] + 2cγ(δ + tγ)

= 2aαβ + b(αδ + βγ) + 2cγδ + 2t[aα2 + bαγ + cγ2]

= u + 2tk.

(4.7)

Thus, we find a unique pair β, δ where 0 ≤ u < 2|k|. As the form q and its equivalent form

have the same discriminant, we obtain u2 − 4kv = Δ. Since k is different from 0 and u is

given, we can get a unique v for this relation.

Hence, we find a one-to-one and onto correspondence between solutions u, v of

the previous relations and solutions u satisfying

u2 ≡ Δ (mod 4|k|), and 0 ≤ u < 2|k|. (4.8)

Up to now, the outcome of our investigations is as follows: when we choose β

and δ for a pair (α, γ) as shown, we have a unique matrix which has determinant 1 and

transforming q to an equivalent form Q = [k, u, v] where u2 ≡ Δ (mod 4|k|), and 0 ≤
u < 2|k|. It can be seen that our representations are mapped to matrices injectively. Then

matrices are mapped to forms where u2 ≡ Δ (mod 4|k|), and 0 ≤ u < 2|k|. But, we see

that the matrices

⎡⎢⎢⎢⎢⎢⎢⎣ α β
γ δ

⎤⎥⎥⎥⎥⎥⎥⎦ and

⎡⎢⎢⎢⎢⎢⎢⎣ −α −β−γ −δ

⎤⎥⎥⎥⎥⎥⎥⎦
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are mapped to the same form. On the other hand, we have two possibilities for a form

satisfying (4.8). One of these possibilities is that it is not equivalent to q, which means

that we have no representation. The other case is that it is equivalent to q. When we find

a matrix which transforms q to Q, and multiply this matrix with the automorphs of q, we

will get this type of matrices and the first columns of these matrices are the representations

related to Q. By doing so, we get a number of matrices for each form satisfying (4.8).

When q is mapped by two matrices to distinct forms, these matrices must be different. On

the other hand, when q is mapped by two matrices to the same form, this means that the

automorphs will be the same. It follows from the last two arguments that any two of these

matrices cannot be the same. Since we obtain u′ = u + 2tk, the first columns of any two

of matrices cannot be the same. Therefore, we conclude that the first columns of matrices

are what we are looking for as proper representations.

We want to understand the cardinality and structure of solutions of (4.8). These

two will help us obtain an upper bound for proper representation R′k. Besides this, if we

find each solution of (4.8) that is equivalent to q, we will completely obtain the number

of proper representations.

Let p be an odd prime satisfying gcd(a, p) = 1. When the congruence x2 ≡ a

(mod p) has a solution, a is called a quadratic residue of p. Otherwise, it is called a

quadratic non-residue of p. Assume that p is an odd prime and gcd(a, p) = 1. The

Legendre symbol
(

a
p

)
is defined by

(
a
p

)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩ 1, if a is a quadratic residue of p;

−1, if a is a quadratic non-residue of p .

The Properties of The Legendre Symbol: Suppose that p is an odd prime with gcd(a, p) =

1, and gcd(b, p) = 1. Then we have the following properties:

1. a ≡ b (mod p)⇒
(

a
p

)
=

(
b
p

)

2.

(
a2

p

)
= 1

3.

(
a
p

)
≡ a

( p−1
2

)
(mod p)

4.

(
ab
p

)
=

(
a
p

) (
b
p

)
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Moreover, we give the most famous result proved by Fermat as follows: Let p be an odd

prime. Then,

(
−1

p

)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩ 1, if p ≡ 1 (mod 4);

−1, if p ≡ 3 (mod 4).

Indeed,

(
−1

p

)
= 1 ⇔ p = 4k + 1

Such tools will be importance to describe our counterexamples for Theorem 1.1 [8].

The number of solutions of (4.8) is contingent upon the relation between Δ and k.

Dirichlet was the first person to calculate this when Δ and k are coprime [8]. The general

case was shown by G. Pall [9, 10]. We now summarize some results of their studies. We

write the number of solutions of (4.8) as;

Γt(s) = #{u : u2 ≡ t (mod 4s), 0 ≤ u < 2s}, (4.9)

where for all t ∈ Z and s ∈ N. Since we have u2 ≡ (u + 2ls)2 (mod 4s), we obtain

Γt(s) =
1

2
#{u : u2 ≡ t (mod 4s)}. (4.10)

When t is divided by 4, remainders must be 0, 1, 2, 3. The remainders 2, 3 cannot be

obtained from a perfect square. We thus investigate the rest of remainders, which are

0 and 1. These remainders play an important role for us because all discriminants have

these remainders when divided by 4. We easily see that Γt(1) = 1. Before we continue

this, we will state the necessary knowledge of number of roots of a congruence.

Let f (x) be a polynomial over the ring of integers defined by f (x) = a0xr +

a1x(r−1) + ... + ar ≡ 0 (mod k) and not all coefficients divisible by k. If f (l) is divisi-

ble by k for some l ∈ Z, then l is called a root of the congruence [8].

Theorem 4.1 [8] If m1, ...,mt are relatively prime in pairs and m is their product, the

number of roots of f (x) = a0xr + a1x(r−1) + ... + ar ≡ 0 (mod m) is the product of the
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numbers of roots

f (x) ≡ 0 (mod m1), ..., f (x) ≡ 0 (mod mt) .

Theorem 4.2 [8] Let p be a prime not dividing c. If p > 2, the number of roots of

x2 ≡ c (mod pn)

is the same as the number (0 or 2) of roots when n = 1. If p = 2, n ≥ 3, there is no root or

just four roots, according as c � 1 or c ≡ 1 (mod 8). If p = 2, n = 2, there is no root or are

two roots, according as c ≡ 3 or c ≡ 1 (mod 4).

Let us continue and analyze the prime factorization when s = pa0

0
pa1

1
. . . pa j

j with

p0 = 2. With the help of Theorem 4.1,

Γt(s) =
1

2
#{u : u2 ≡ t (mod pa0+2

0
pa1

1
. . . pa j

j )}

=
1

2
#{u : u2 ≡ t (mod pa0+2

0
)}

j∏
i=1

#{u : u2 ≡ t (mod pai
i )}.

(4.11)

Since we have Γt(1) = 1, we again use the Theorem 4.1 for positive i. Then we get

Γt(pai
i ) =

1

2
#{u : u2 ≡ t (mod 4pai

i )}

=
1

2
#{u : u2 ≡ t (mod 4)}#{u : u2 ≡ t (mod pai

i )}

= #{u : u2 ≡ t (mod pai
i )}.

(4.12)

Hence, we conclude

Γt(s) =

j∏
i=0

Γt(pai
i ). (4.13)

We now need to calculate Γt(pa) for prime p and positive a. We easily get Γt(pa) = p�a/2�

for t = 0. Otherwise, with the help of Theorem 4.2, we can obtain the outcomes, which
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are mostly related to divisibility properties between p and t. In 1931, G. Pall computed

all outcomes in nine cases [9]. For these nine cases, we obtain an upper bound Γt(pa) ≤
2p�c/2�, where c is the power of p as a factor of t. If d(s) = (a1 + 1)(a2 + 1) · · · (aj + 1) is

the number of positive divisors of s, it is possible to write Γt(s) ≤ d(s)
√
|t|.

For any positive ε, we have d(s) ≤ Cεsε [11]. Combining them, we conclude

Γt(s) ≤ Cεsε
√
|t|. (4.14)

We focus on the number of automorphs. When we consider positive definite forms

or indefinite forms with nonzero square discriminant, we have at most 6 automorphs

[8, 9, 10]. This implies that we have an upper bound for the cardinality of R′k by mul-

tiplying by 6 which comes from the number of automorphs of q. Therefore, we obtain

#R′k ≤ 6Cε|k|ε
√
|Δ|. (4.15)

We now can pass from R′k to Rk because of the bijectivity relation using (4.3). Therefore,

#Rk =
∑
g2 |k

#R′k/g2 ≤ 6d(|k|)Cε|k|ε
√
|Δ| ≤ Cε|k|ε

√
|Δ|. (4.16)

When we consider the cases when the discriminant is zero or positive non-square, it is

known that there are infinitely many automorphs which are found by using the theory of

Pell-like equations. Pell’s equation is x2 − Δy2 = 1 in which Δ is a positive integer which

is not a perfect square, and the equation x2 − Δy2 = k is called Pell-like equation where k

is an integer.

Theorem 4.3 [8] Every automorph

⎡⎢⎢⎢⎢⎢⎢⎣α β
γ δ

⎤⎥⎥⎥⎥⎥⎥⎦

of a primitive, integral form [a, b, c] of discriminant Δ > 0 has

26



α =
1

2
(t − bu), β = cu, γ = au, δ =

1

2
(t + bu), (4.17)

where t and u are integral solutions of

t2 − Δu2 = 4. (4.18)

Conversely, if t and u are integral solutions of (4.18), the numbers (4.17) are integers and

define an automorph.

Theorem 4.4 [8] Equation (4.18) has a solution with u � 0 .

Let q be primitive. Since we assume positive non-square discriminant, it must be

at least 5. According to Theorem 4.3, we find automorphs of q as stated. We see that

(±2, 0) satisfy this equation, and we have no solution when t = 0. On account of Theorem

4.4, t2 − Δu2 = 4 has a solution with t � 0, u � 0. It is clear that (−t, u), (t,−u), (−t,−u)

also satisfy this equation when (t, u) is a solution of this equation. Thus, it is enough to

obtain the positive solutions. When (t, u), (t′, u′) are solutions, t < t′ leads to u < u′. This

relation implies that (T,U) is a solution that is positive and minimum. We will call (T,U)

the least positive solution of the equation. It can be easily seen that U ≥ 1 and T ≥ 3

since Δ ≥ 5.

Theorem 4.5 [8] For Δ > 0, all sets of integral solutions t, u of (4.18) are given by

1

2
(t +
√
Δu) = ±[

1

2
(T +

√
ΔU)]k, (k = 0,±1,±2 . . .), (4.19)

where T , U give the least positive solution .

According to Theorem 4.5, we find all integer solutions of t2 − Δu2 = 4 given by

(t +
√
Δu) = i2− j+1(T +

√
ΔU) j, i = ±1, j = 0,±1,±2 . . . (4.20)

and automorphs associated with our solutions defined by

i[A] j, i = ±1, j = 0,±1,±2 . . . (4.21)
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The matrix [A] denotes the automorph associated with the least positive solution. We

investigate the relation between these solutions and matrices. We have only solutions

(±2, 0) with one entry 0 if we take i = ±1 and j = 0. If i, j are positive, then (t, u) will

be a positive solution. We get a negative solution (−t,−u) when we take entries −i, j. We

have solutions (t,−u) and (−t, u) respectively if we consider entries i,− j and −i,− j. As

we have (T +
√
ΔU)/2 > 2, distinct pairs of i, j lead to different solution (t, u), and thus

we obtain a different solution coming from (4.20) for every pair of i, j. Since a and c are

nonzero, and if u � u′, we obtain different automorphs. If u = u′ we must get t � t′. This

result gives rise to different values on the diagonal of corresponding automorph matrices.
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CHAPTER 5

THE CASE OF POSITIVE DEFINITE FORMS

The goal of this chapter is to prove the first theorem put forward in the introduction

by using the analytic, geometric and arithmetic knowledge of positive definite quadratic

forms as given in chapter 3 and chapter 4.

Proof Let us start with the basic step p = ∞. By using the norm of l∞(Z),

‖Iλ f ‖∞ = sup
n∈Z

∣∣∣∣ ∑
m∈Z∗

f (q(m, n))

|m|λ
∣∣∣∣ ≤ ‖ f ‖∞ ∑

m∈Z∗

1

|m|λ
= Cλ‖ f ‖∞.

We easily see that the constant only depends on λ, but not the form q. We turn to the

case p = 1. In this case, we need to return to the analysis in chapter 2. Since we are

concerned with the positive definite forms, we need our sets Ak for only positive integers

k. We partition our sets Ak as follows

A′k := {(m, n) ∈ Ak : |m| ≤ |k|1/4(−Δ)−1/2}, A′′k := Ak \ A′k. (5.1)

Then by using Lemma 3.1 , we get

∑
(m,n)∈Ak

1

|m|λ
=

∑
(m,n)∈A′k

1

|m|λ
+

∑
(m,n)∈A′′k

1

|m|λ
≤ 4 +

∑
(m,n)∈A′′k

1

|m|λ
.

When we replace ε in (4.16) by λ/8, we obtain an estimate for the cardinality of the set

A′′k .

∑
(m,n)∈A′′k

1

|m|λ
≤ Cλkλ/8

√
|Δ|k−λ/4|Δ|λ/2 = Cλ|Δ|(λ+1)/2k−λ/8 ≤ Cλ,Δ.

We conclude that
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∑
(m,n)∈Ak

1

|m|λ
≤ Cλ,Δ.

We obtain

‖Iλ f ‖1 ≤ Cλ,Δ‖ f ‖1.

Our constant C depends on λ and Δ as seen.

When 1 < p < ∞, our methods alter slightly from the previous case p = 1. By

using the Hölder inequality, we introduce the partition sets Ak. Assume λ′ = λ − 1 + p−1.

Then

‖Iλ f ‖pp =
∑
n∈Z

∣∣∣∣ ∑
m∈Z∗

f (q(m, n))

|m|λ
∣∣∣∣p ≤∑

n∈Z

( ∑
m∈Z∗

| f (q(m, n))|
|m|λ′/2

1

|m|1−p−1+λ′/2

)p

When applying the Hölder inequality to the right hand side parenthesis, we obtain

≤
∑
n∈Z

[ ∑
m∈Z∗

| f (q(m, n))|p

|m|λ′p/2
][ ∑

m∈Z∗

1

|m|1+λ′p/2(p−1)

]p−1
.

It follows from this inequality that the first parenthesis creates the sets Ak, and the second

parenthesis gives rise to a constant. Therefore,

≤ Cp,λ

∑
k∈N

| f (k)|p
∑

(m,n)∈Ak

1

|m|λ′p/2
.

Then we obtain

‖Iλ f ‖p ≤ Cp,λ,Δ‖ f ‖p.

C depends on p, λ and Δ as shown.

Let us prove the sharpness part of this theorem. We now consider the case p = ∞.

Let f be a nonzero constant function and q an arbitrary positive definite form. It is obvious
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that λ cannot be 1.

Suppose that p = 1. We firstly deal with the case r = 1. Later, we will handle any

r for this case. We let q(m, n) = m2 + n2. Jacobi proved that the number of representations

of k as a sum of two squares is 4d(k) when k is an odd positive integer and all prime

factors of k are of the form 4z + 1 [8]. The set Ak has at least 4d(k) − 2 ≥ 2d(k) elements.

Hence, when we look at the numbers k j := (5 · 13) j, j ∈ N, we get #Ak j ≥ 2( j + 1)2.

Taking logarithm, we get j = log k j/ log 65. Thus, we rewrite

#Ak j ≥
2

log2 65
log2 k j.

Let us define

f (k) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
j−2 if k = k j

0 otherwise
.

This function obviously is in l1(Z). However,

‖Ilog f ‖1 =
∑
n∈Z

∑
m∈Z∗

f (q(m, n))

log(1 + |m|)
=

∑
k∈N

f (k)
∑

(m,n)∈Ak

1

log(1 + |m|)

=
∑
j∈N

f (k j)
∑

(m,n)∈Ak j

1

log(1 + |m|)

≥
∑
j∈N

j−2 2

log2 65
log2 k j

1

log k j

=
2

log 65

∑
j∈N

j−1,

and this will obviously be divergent. This argument can be applied for any r by consider-

ing a larger number of primes of the form 4z + 1 rather than only 5, 13. Let us consider

the case 1 < p < ∞. We define the form q(m, n) := m2 + n2, and a function

f (k) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
j−

1
p log−

1+p
2p j if k = j2, j ∈ N − {1}

0 otherwise
. (5.2)
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Then we obtain

‖I1−p−1 f ‖pp =
∑
n∈Z

∣∣∣∣ ∑
m∈Z∗

f (q(m, n))

|m|1−p−1

∣∣∣∣p ≥ ∣∣∣∣ ∑
m∈Z∗

f (q(m, 0))

|m|1−p−1

∣∣∣∣p

=
(
2
∑
m≥2

m−p−1

log−
1+p
2p m

m1−p−1

)p

=
(
2
∑
m≥2

1

m log
1+p
2p m

)p
,

(5.3)

and this result is clearly divergent. �
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CHAPTER 6

THE CASE OF INDEFINITE FORMS

In this chapter, the second theorem claimed in the introduction will be shown

with the help of some results obtained from chapter 3 and chapter 4. We are faced with

a more complicated case in comparison to positive definite forms since the number of

representations is infinite and the automorphs of the form q are constructively obtained.

We will start with the specific case, in which the form q = [a, b, c] is primitive and b = 0

to get estimates for our operator Iλ f by using (4.21) as contrasted with (4.16) in Theorem

1.1. We will deal with the general case q(m, n) = ax2 + bxy + cy2 later.

Proof For p = ∞ the same method as in the proof of Theorem 1.1 yields

‖Iλ f ‖∞ ≤ Cλ‖ f ‖∞.

Let us consider the case p = 1. Firstly, we suppose that the form q(m, n) =

am2 + cn2 satisfying a > 0, c < 0 and gcd(a, c) = 1. Since b = 0 and the determinant of

[q] is −4ac, it must be at least 8. We use the sets Ak, for all k ∈ Z. The set A0 is empty

because of (3.2). Suppose k � 0. Let us consider the sets

A′k := {(m, n) ∈ Z∗ × Z∗ : q(m, n) = k}.

Then the sets Ak \ A′k involve at most 2 elements. Therefore, we have

∑
(m,n)∈Ak

1

|m|λ
≤ 2 +

∑
(m,n)∈A′k

1

|m|λ
.

If (m, n) ∈ A′k, we have (−m,−n), (m,−n), (−m, n) ∈ A′k as might be expected.

Thus, when we consider the sets

A′′k := {(m, n) ∈ N × N : q(m, n) = k},
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we obtain

∑
(m,n)∈Ak

1

|m|λ
≤ 2 +

∑
(m,n)∈A′k

1

|m|λ
= 2 + 4 ·

∑
(m,n)∈A′′k

1

|m|λ
.

We henceforth investigate the sum over A′′k . We partition A′′k as

A′′k =
⋃
g2 |k

A′′k,g, A′′k,g := {(m, n) ∈ N × N : q(m, n) = k, gcd(m, n) = g}.

The map (m, n) �→ (m/g, n/g) is a one-to-one correspondence from A′′k,g onto A′′k/g2,1
as

seen in chapter 4. Therefore, we obtain a solution for every representation in A′′k/g2,1
by

solving

u2
g ≡ Δ (mod 4|k/g2|), and 0 ≤ ug < 2|k/g2|, (6.1)

and the associated form is [k, ug, vg]. We thus partition

A′′k/g2,1
=

⋃
ug

A′′k/g2,1,ug
.

These induce decompositions of A′′k,g. We denote the subsets coming from these decom-

positions A′′k,g,ug
. Hence,

∑
(m,n)∈A′′k

1

|m|λ
=

∑
g2 |k

∑
ug

∑
(m,n)∈A′′k,g,ug

1

|m|λ
.

Then we obtain

∑
(m,n)∈A′′k,g,ug

1

|m|λ
=

1

gλ
∑

(m,n)∈A′′
k/g2 ,1,ug

1

|m|λ
.

Let the sets A′′k/g2,1,ug
be nonempty. Then we can find the elements of these sets by ob-
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taining a matrix that transforms q to an equivalent form [k/g2, ug, vg] and multiplying

that matrix with the automorphs of q. We let that [Ug] be a matrix transforming q to

[k/g2, ug, vg], and let [A] be the automorph of q associated with the least positive solution

(T,U) of the equation t2 − Δu2 = 4. We denote these

[Ug] :=

⎡⎢⎢⎢⎢⎢⎢⎣αug βug

γug δug

⎤⎥⎥⎥⎥⎥⎥⎦ , [A] :=

⎡⎢⎢⎢⎢⎢⎢⎣T/2 −cU

aU T/2

⎤⎥⎥⎥⎥⎥⎥⎦ . (6.2)

By our assumption, we obtain T 2 = ΔU2 + 4 ≥ Δ + 4 ≥ 12, and this result implies

T ≥ 2
√

3. Since the first columns of the matrices give the proper representations as stated

in chapter 4, the elements (m, n) ∈ A′′k/g2,1,ug
are the first columns of the matrices in the

below chains where both entries of the first column are positive

. . . [A]−2[Ug], [A]−1[Ug], [A]0[Ug], [A][Ug], [A]2[Ug] . . .

. . . − [A]−2[Ug], −[A]−1[Ug], −[A]0[Ug], −[A][Ug], −[A]2[Ug] . . .
(6.3)

Let

⎡⎢⎢⎢⎢⎢⎢⎣α β
γ δ

⎤⎥⎥⎥⎥⎥⎥⎦

be any matrix from these chains.

As we get

⎡⎢⎢⎢⎢⎢⎢⎣T/2 −cU

aU T/2

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣α β
γ δ

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣Tα/2 − cUγ Tβ/2 − cUδ

aUα + Tγ/2 aUβ + Tδ/2

⎤⎥⎥⎥⎥⎥⎥⎦ ,

if α > 0, γ > 0, we have Tα/2 − cUγ > 0, aUα + Tγ/2 > 0, and also

Tα/2 − cUγ >
√

3α. (6.4)

Thus, if we have a matrix in one of the chains (6.3) with
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α > 0, γ > 0, (6.5)

then we observe that each matrix on the right of this matrix in the chain satisfies the same

property. This gives rise to that if we have matrices satisfying (6.5), then all of them must

be situated in only one chain. Since we have Tα/2−cUγ >
√

3α, there must be a leftmost

matrix satisfying (6.5). We introduce the leftmost matrix as shown below

[U′g] :=

⎡⎢⎢⎢⎢⎢⎢⎣αu′g βu′g

γu′g δu′g

⎤⎥⎥⎥⎥⎥⎥⎦ .

We conclude that we obtain all elements of (m, n) ∈ A′′k/g2,1,ug
by looking at the first

columns of [A] j[U′g] for j ≥ 0, and the first entry of the first column of [A] j[U′g] can-

not be less than Tα/2 − cUγ > 3 j/2αu′g . As a result, we obtain

∑
(m,n)∈A′′

k/g2 ,1,ug

1

|m|λ
≤

1

αλu′g

∞∑
j=0

1

3 jλ/2 ≤
Cλ
αλu′g
.

We get

∑
(m,n)∈A′′k,g,ug

1

|m|λ
≤

Cλ
(gαu′g)

λ
.

We find only one representation for (gαu′g , gγu′g) ∈ A′′k,g,ug
by multiplying the sets A′′k/g2,1,ug

with g. It follows from this result that we obtain an estimate in the infinite sum over

representations of q = am2 + cn2 with a > 0, c < 0 and gcd(a, c) = 1. Indeed,

∑
(m,n)∈A′′k

1

|m|λ
=

∑
g2 |k

∑
ug

∑
(m,n)∈A′′k,g,ug

1

|m|λ
≤ Cλ

∑
g2 |k

∑
ug

1

(gαu′g)
λ
.

Since we have at most 4 representations q(m, n) = k satisfying |m| ≤ |k|1/4Δ−1/2 by Lemma

3.2, we get

≤ Cλ
[
4 +
Δλ/2

|k|λ/4
∑
g2 |k

∑
ug

1
]
.
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The last double sum enable us to get the summation over g of number of solutions of (6.1).

Furthermore, we know from chapter 4 that this number has an upper bound d(|k|)
√
Δ for

each g. The number of g has again an upper bound d(|k|). Hence, when we utilize the

relation d(|k|) ≤ Cλ|k|λ/16, the double sum will be bounded by Cλ|k|λ/8
√
Δ. We thus obtain

≤ Cλ
[
4 +
Δλ/2

|k|λ/4
Cλ|k|λ/8

√
Δ
]
≤ Cλ

[
4 +CλΔ(1+λ)/2] ≤ CλΔ(1+λ)/2.

We conclude

∑
(m,n)∈Ak

1

|m|λ
≤ CλΔ(1+λ)/2. (6.6)

Then we have

‖Iλ f ‖1 ≤ CλΔ(1+λ)/2‖ f ‖1.

We turn to the general case. We suppose that q(m, n) = am2 + bmn + cn2 is an

indefinite form of non-square discriminant. Non-square discriminant gives a � 0, c � 0.

Then we can write

‖Iλ,q f ‖1 ≤
∑
k∈Z

| f (k)|
∑

(m,n)∈Ak

1

|m|λ
,

with Ak := {(m, n) ∈ Z∗ × Z : am2 + bmn + cn2 = k}. Then we get

{(m, n) ∈ Z∗ × Z : am2 + bmn + cn2 = k}

={(m, n) ∈ Z∗ × Z : 4acm2 + 4bcmn + 4c2n2 = 4ck}

={(m, n) ∈ Z∗ × Z : (bm + 2cn)2 − Δm2 = 4ck}

={(m, n) ∈ Z∗ × Z : Δm2 − (bm + 2cn)2 = −4ck.}

Let q′(x, y) := Δx2 − y2, and the sets Aq′,k := {(m, n) ∈ Z∗ × Z : Δm2 − n2 = k}. We easily

get Δ(q′) = 4Δ(q). When (m, n) ∈ Ak, (m, bm + 2cn) will be in Aq′,−4ck, and also this map
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(m, n) �→ (m, bm + 2cn) is injective. Hence,

∑
(m,n)∈Ak

1

|m|λ
≤

∑
(m,n)∈Aq′ ,−4ck

1

|m|λ
. (6.7)

With the help of the form q′ defined above and the relation (6.6) with Δ(q′) = 4Δ(q), we

get

∑
(m,n)∈Aq′ ,−4ck

1

|m|λ
≤ Cλ21+λΔ(1+λ)/2 = CλΔ(1+λ)/2, (6.8)

and hence,

‖Iλ,q f ‖1 ≤ CλΔ(1+λ)/2‖ f ‖1 = Cλ,Δ‖ f ‖1.

Let us consider the case 1 < p < ∞ and q(m, n) = am2 + bmn + cn2 an indefinite form of

non-square discriminant. Applying the same process as done for the positive definite case

gives

‖Iλ f ‖pp ≤ Cp,λ

∑
k∈N

| f (k)|p
∑

(m,n)∈Ak

1

|m|λ′p/2

satisfying λ′ = λ − 1 + p−1. By using (6.7) and (6.8), we obtain

∑
(m,n)∈Ak

1

|m|λ′p/2
≤ Cp,λΔ

(1+λ′p/2)/2,

and thus

‖Iλ f ‖p ≤ Cp,λΔ
1/2p+λ′/4‖ f ‖p = Cp,λ,Δ‖ f ‖p.

Let us deal with the sharpness part of the theorem. This is clear for the case p = ∞.
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If p = 1, it will be easy to prove unboundedness when r = 1 by utilizing the infinitude of

number of automorphs of the form. To show it, suppose that q(m, n) := m2 − 8n2 and

f (k) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if k = 4

0 otherwise
.

By using (4.20) for k = 4, we obtain

(t + 2
√

2u) = i2(3 + 2
√

2) j, i = ±1, j = 0,±1,±2 . . . .

It is enough to use positive representations t j > 0, uj > 0 when we consider i = 1 and

j > 0. It is possible to write t j ≤ 2 · 6 j. Hence,

‖Ilog f ‖1 =
∑
k∈N

f (k)
∑

(m,n)∈Ak

1

log(1 + |m|)
=

∑
(m,n)∈A4

1

log(1 + |m|)

≥
∑
(t j,u j)

1

log
(
1 + t j

)
≥

∑
(t j,u j)

1

log 6 j+1
,

and this is divergent. However, this argument cannot be utilized for the cases when r ≥ 2.

We therefore utilize the arithmetic of quadratic forms as given in chapter 4. We mentioned

the specific form q(m, n) = m2 + n2 in chapter 4. When this form represents k, we have

|m| ≤ k. However, there is no inequality of this type for indefinite forms, or rather it is

known that |m| ≥ C|k| can be true for arbitrary C ∈ N. But, we can find for every solution

of (6.1) a representation (m, n) = k satisfying |m| ≤ 10|k|, and this will be enough. We

thus compute the number of solutions of (6.1), and need to be certain of every solution

giving representations of k.

Let q(m, n) := m2 − 2n2. Then Δ = 8. We choose primes 7, 17, which can be

expressed as 8l − 1, 8l + 1 respectively. Let us consider k j = (7 · 17)2 j+1, j ∈ N and a

function

f (k) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
j−2 if k = k j

0 otherwise
.
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We calculate the number of solutions of (6.1). When g is a square divisor of k j, it has the

form 7i117i2 , 0 ≤ i1, i2 ≤ j, and thus our congruence relation is

u2
g ≡ 8 (mod 4 · 72( j−i1)+1 · 172( j−i2)+1), 0 ≤ n < 2 · 72( j−i1)+1 · 172( j−i2)+1,

and we also have half the number of solutions of

u2
g ≡ 8 (mod 4 · 72( j−i1)+1 · 172( j−i2)+1). (6.9)

By using Theorem 4.1, we find the number of roots of this congruence. Let us consider

these congruences

n2 ≡ 8 (mod 4),

n2 ≡ 8 (mod 72( j−i1)+1),

n2 ≡ 8 (mod 172( j−i2)+1).

(6.10)

The product of number of solutions of (6.10) is the number of solutions of (6.9). In the

first congruence in (6.10), we clearly have 2 solutions. In the rest of congruences, we

use the Theorem 4.1. As a result, we obtain 4 solutions for every choice of i1, i2. As

we have exactly j + 1 choices for every i1, i2, our congruences get exactly 4( j + 1)2 ≥
log2 k j/ log2 119 solutions. For every solution [k j/g2, ug, vg], we are looking for a matrix

[Ug] which has determinant 1, and mapping q to this solution as shown in (6.2). We

have just one equivalence class of forms for Δ = 8. This result can be seen page 99-104

of [8]. Therefore, there exists a matrix [Ug] transforms q to [k j/g2, ug, vg]. As we have

α2
ug
−2γ2

ug
= k j/g2 > 0, we obtain αug � 0. We know that the matrix −[Ug] also transforms

q to [k j/g2, ug, vg], so we may suppose αug > 0. All representations associated with ug

are as given by (6.3), and we have the automorph [A] and the inverse of automorph [A] is

expressed by

[A] :=

⎡⎢⎢⎢⎢⎢⎢⎣3 4

2 3

⎤⎥⎥⎥⎥⎥⎥⎦ , [A]−1 =

⎡⎢⎢⎢⎢⎢⎢⎣ 3 −4

−2 3

⎤⎥⎥⎥⎥⎥⎥⎦ .

We note that we need to pick only one representation to ug. If αug ≤ 10k j/g2, we suppose
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that (gαug , gγug) is this representation. But, we now assume αug > 10k j/g2 . We thus obtain

γ2
ug
> 49k j/g2, and γug might be positive or negative. When this is positive, it follows from

the matrix [A]−1[Ug] that we get this representation (3αug − 4γug ,−2αug + 3γug), where we

get 0 < 3αug − 4γug < αug/3, and 0 < −2αug + 3γug . When 3αug − 4γug ≤ 10k j/g2, this

representation will be multiplied by g and correspond to ug. If it does not happen, we

will again do the same procedure. It can be easily seen that we have a representation

by applying this process a finite many of times. Likewise, if γug < 0, it follows from

the matrix [A][Ug] that we have the representation (3αug + 4γug , 2αug + 3γug), where we

get 0 < 3αug + 4γug < αug/3, and 2αug + 3γug < 0. If 3αug + 4γug ≤ 10k j/g2, then

this representation will be multiplied by g and correspond to ug, if not, we will again do

the same process. As a result of these, we find a representation (gαug , gγug) satisfying

0 < αug ≤ 10k j/g2 for every solution ug. After we find all representations, we get

‖Ilog f ‖1 =
∑
n∈Z

∑
m∈Z∗

f (q(m, n))

log(1 + |m|)
=

∑
k∈N

f (k)
∑

(m,n)∈Ak

1

log(1 + |m|)

=
∑
j∈N

f (k j)
∑

(m,n)∈Ak j

1

log(1 + |m|)

≥
∑
j∈N

j−2
log2 k j

log2 119

1

2 log k j

≥
1

log 119

∑
j∈N

j−1,

and this obviously diverges. This example can be extended for any r ∈ N. It is known

that 8 is a quadratic residue for any prime p which can be expressed as 8l ± 1. By defi-

nition of quadratic residue, we obtain 2 solutions coming from u2
g ≡ 8 (mod p). Hence,

when we consider more primes rather than only 7, 17, we do the same process to prove

unboundedness results for any r ∈ N.

If 1 < p < ∞ and λ = 1− p−1, we can again consider the form q(m, n) := m2−2n2,

and f as given in (5.2). Then we can find our result by applying the same process as

shown in (5.3).

�

41



CHAPTER 7

CONCLUSION

In this thesis, we proved Theorem 1.1 and Theorem 1.2 to obtain estimates on

certain discrete fractional integral operators by using number theory. We expressed step

by step how arithmetic, analytic and geometric properties are used for the operator Iλ f ,

and how to obtain estimates for this operator. We decided to use binary quadratic forms

as phase polynomials since the theory of binary quadratic forms is well-developed. We

believe that the same methods can be applied for higher rank forms, but the theory of

these forms are much harder. We proved that Theorem 1.2 fails when the discriminant is

a square number by demonstrating a certain function and taking l1(Z) norm of Iλ f . l1(Z)

estimates give rise to the quantity in (2.9), and we concluded that this quantity obviously is

about the number of representations of k by the form q, and also structure and distribution

of these representations. It follows that this sum is bounded by a constant when #Ak is

small. That case was used to show Theorem 1.1. However, when considering #Ak that

is large or infinite, we observe that the first coordinates of our representations quickly

increase. This case was used to prove Theorem 1.2 by using the idea of our first theorem.

We turned to study the geometry and analysis of binary quadratic forms to under-

stand the representation problem and distribution of the representations of numbers over

the real numbers. We sketch the curves obtained from both positive definite forms and

indefinite forms to gain intuition. Although we proved lemmas for both forms with dif-

ferent methods, we obtained that any quadratic forms having non-square discriminant get

at most 4 solutions (x, y) ∈ Z2 satisfying

|x| ≤
|w|1/4
√
−Δ
.

These lemmas play an important role of proving our main theorems.

In chapter 4, we exploited the classical theory of binary quadratic forms by using

results given by Dirichlet, Gauss, Jacobi, and Pall. To prove our theorems, we concen-

trated on the number of solutions of a given form q(m, n) = k satisfying conditions (4.8),

and the number of automorphs of q. We concluded that the first one is related to quadratic

residues uncovered by firstly Dirichlet, and the second one is about the sign of Δ. If Δ < 0,
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then we have finite automorphs. We showed that if Δ < 0,

#R′k ≤ Cε|k|ε
√
|Δ|.

We proved that improper representations of k with the greatest common divisor g are

mapped bijectively to proper representations of k/g2. Therefore, we get information about

#Rk by using #R′k,

#Rk =
∑
g2 |k

#R′k/g2 ≤ d(|k|)Cε|k|ε
√
|Δ| ≤ Cε|k|ε

√
|Δ|.

If the discriminant is 0 or positive non-square, then there are infinitely many automorphs.

With the help of the Theorems 4.3, 4.4, 4.5, we find the automorphs of q by solving the

Pell-like equation t2−Δu2 = 4, or vice versa. We obtain all integer solutions of t2−Δu2 = 4

given by

1

2
(t +
√
Δu) = ±[

1

2
(T +

√
ΔU)]k, (k = 0,±1,±2 . . .),

where T , U give the least positive solution, and the automorphs associated with our solu-

tions given by

i[A] j, i = ±1, j = 0,±1,±2 . . .

These results form the main part of our proofs.

We proved Theorem 1.1. We used #Rk to get estimates for our operator Iλ f . We

gave estimates for our theorem

• ‖Iλ f ‖∞ ≤ Cλ‖ f ‖∞,

• ‖Iλ f ‖1 ≤ Cλ,Δ‖ f ‖1,

• ‖Iλ f ‖p ≤ Cp,λ,Δ‖ f ‖p.

We proved Theorem 1.2. Firstly, we obtained estimates for the specific case, in

which q = [a, b, c] is primitive and b = 0
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• ‖Iλ f ‖∞ ≤ Cλ‖ f ‖∞,

• ‖Iλ f ‖1 ≤ Cλ,Δ(1+λ)/2‖ f ‖1.

Later, we dealt with the general case q(m, n) = am2 + bmn + cn2. We concluded that

• ‖Iλ f ‖∞ ≤ Cλ‖ f ‖∞

• ‖Iλ,q f ‖1 ≤ Cλ,Δ‖ f ‖1,

• ‖Iλ f ‖p ≤ Cp,λ,Δ‖ f ‖p

Furthermore, we demonstrated our counterexamples for the sharpness parts of

these theorems.
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