Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/6841
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Akın, Okan | - |
dc.contributor.author | Tıhmınlıoğlu, Funda | - |
dc.date.accessioned | 2018-03-27T07:59:59Z | |
dc.date.available | 2018-03-27T07:59:59Z | |
dc.date.issued | 2018-03 | |
dc.identifier.citation | Akın, O., and Tıhmınlıoğlu, F. (2018). Effects of organo-modified clay addition and temperature on the water vapor barrier properties of polyhydroxy butyrate homo and copolymer nanocomposite films for packaging applications. Journal of Polymers and the Environment, 26(3), 1121-1132. doi:10.1007/s10924-017-1017-2 | en_US |
dc.identifier.issn | 1566-2543 | |
dc.identifier.issn | 1566-2543 | - |
dc.identifier.issn | 1572-8900 | - |
dc.identifier.uri | http://doi.org/10.1007/s10924-017-1017-2 | |
dc.identifier.uri | http://hdl.handle.net/11147/6841 | |
dc.description.abstract | Polymer nanocomposites, based on bacterial biodegradable thermoplastic polyester, poly(hydroxy-butyrate) (PHB), poly(hydroxyl-butyrate-co-hydroxy-valerate) (PHBHV), and commercial organo-modified montmorillonite (OMMT-Cloisite 10A) were prepared by solution casting method. This work aims to investigate the effect of Cloisite 10A type clay addition on the water vapour permeability properties of PHB/OMMT, and PHBHV/OMMT nanobiocomposite films. Temperature dependence of water vapor permeabilities of the films were also evaluated at various temperatures, and semi empirical permeability models were used to predict the permeability of polymer systems as a function of clay concentration and aspect ratio of nanoplates. Moreover, thermal, optical, and mechanical properties of the composites were examined by using varieties of techniques including differential scanning calorimeter (DSC), thermogravimetric analyzer (TGA), scanning electron microscope (SEM), and thin-film X-ray diffractometer (TF-XRD) respectively. Test results indicated that addition of highly intergallery swollen Cloisite 10A to the PHB/PHBHV, reduced the water vapor permeability up to 41 and 25% compared to native PHB and PHBHV films, respectively. Regarding the all mechanical properties measured, the maximum improvement was achieved for 3 wt% clay loaded samples for both PHB and PHBHV polymer composites. An increase of about 152 and 73% in tensile strength and of 77 and 18% in strain at break was achieved for PHB and PHBHV polymers, respectively. As a result of X-ray diffraction analysis, exfoliated structure was achieved at low clay loaded sample (1% w/w), however at higher concentration (3% w/w) the structure found as intercalated. Therefore, it is an evident that enhancement of characteristic properties highly depend on the dispersion level of clay particles in polymer matrix. The results obtained in this study show the feasibility of improvement of the properties of PHB based polymers with incorporation of nanoclay. | en_US |
dc.description.sponsorship | National Research Council of Turkey (TUBITAK 108M335) | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer Verlag | en_US |
dc.relation | info:eu-repo/grantAgreement/TUBITAK/MAG/108M335 | en_US |
dc.relation.ispartof | Journal of Polymers and the Environment | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Bionanocomposite | en_US |
dc.subject | Water vapor | en_US |
dc.subject | Polymer films | en_US |
dc.subject | PHBHV | en_US |
dc.subject | Biodegradable polymers | en_US |
dc.subject | Nanocomposites | en_US |
dc.title | Effects of organo-modified clay addition and temperature on the water vapor barrier properties of polyhydroxy butyrate homo and copolymer nanocomposite films for packaging applications | en_US |
dc.type | Article | en_US |
dc.authorid | TR1143 | en_US |
dc.institutionauthor | Akın, Okan | - |
dc.institutionauthor | Tıhmınlıoğlu, Funda | - |
dc.department | İzmir Institute of Technology. Chemical Engineering | en_US |
dc.identifier.volume | 26 | en_US |
dc.identifier.issue | 3 | en_US |
dc.identifier.startpage | 1121 | en_US |
dc.identifier.endpage | 1132 | en_US |
dc.identifier.wos | WOS:000426565900024 | en_US |
dc.identifier.scopus | 2-s2.0-85018480699 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.doi | 10.1007/s10924-017-1017-2 | - |
dc.relation.doi | 10.1007/s10924-017-1017-2 | en_US |
dc.coverage.doi | 10.1007/s10924-017-1017-2 | en_US |
dc.identifier.wosquality | Q1 | - |
dc.identifier.scopusquality | Q1 | - |
item.fulltext | With Fulltext | - |
item.grantfulltext | open | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
crisitem.author.dept | 03.02. Department of Chemical Engineering | - |
Appears in Collections: | Chemical Engineering / Kimya Mühendisliği Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
32
checked on Nov 15, 2024
WEB OF SCIENCETM
Citations
30
checked on Nov 9, 2024
Page view(s)
544
checked on Nov 18, 2024
Download(s)
374
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.