Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/6793
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBüyükaşık, Engin-
dc.date.accessioned2018-02-15T08:21:09Z-
dc.date.available2018-02-15T08:21:09Z-
dc.date.issued2012-06-
dc.identifier.citationBüyükaşık, E. (2012). Rings over which flat covers of simple modules are projective. Journal of Algebra and its Applications, 11(3). doi:10.1142/S0219498811005737en_US
dc.identifier.issn0219-4988-
dc.identifier.issn1793-6829-
dc.identifier.urihttp://doi.org/10.1142/S0219498811005737-
dc.identifier.urihttp://hdl.handle.net/11147/6793-
dc.description.abstractLet R be a ring with identity. We prove that, the flat cover of any simple right R-module is projective if and only if R is semilocal and J(R) is cotorsion if and only if R is semilocal and any indecomposable flat right R-module with unique maximal submodule is projective.en_US
dc.language.isoenen_US
dc.publisherWorld Scientific Publishing Co. Pte Ltden_US
dc.relation.ispartofJournal of Algebra and its Applicationsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectFlat coversen_US
dc.subjectPerfect ringen_US
dc.subjectProjective moduleen_US
dc.titleRings over which flat covers of simple modules are projectiveen_US
dc.typeArticleen_US
dc.authoridTR130906en_US
dc.institutionauthorBüyükaşık, Engin-
dc.departmentİzmir Institute of Technology. Mathematicsen_US
dc.identifier.volume11en_US
dc.identifier.issue3en_US
dc.identifier.wosWOS:000304606500003en_US
dc.identifier.scopus2-s2.0-84861470079en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1142/S0219498811005737-
dc.relation.doi10.1142/S0219498811005737en_US
dc.coverage.doi10.1142/S0219498811005737en_US
dc.identifier.wosqualityQ3-
dc.identifier.scopusqualityQ3-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept04.02. Department of Mathematics-
Appears in Collections:Mathematics / Matematik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
6793.pdfMakale123.32 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

4
checked on Nov 9, 2024

Page view(s)

196
checked on Nov 18, 2024

Download(s)

246
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.