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Let R be aring with identity. We prove that, the flat cover of any simple right R-module
is projective if and only if R is semilocal and J(R) is cotorsion if and only if R is
semilocal and any indecomposable flat right R-module with unique maximal submodule
is projective.
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1. Introduction

Throughout, R is a ring with an identity element and all modules are unital right R-
modules. Let F be the class of all flat right R-modules. Following [9], an F-precover
of an R-module M is a homomorphism ¢: F — M with F' € F such that for any
o' F' — M with F' € F, there exists a homomorphism f:F’ — F such that
¢ = @f. An F-precover p: F — M is said to be an F-cover if every endomorphism
f of F with of = ¢ is an isomorphism. For an R-module M, an epimorphism
f:P — M is said to be a projective cover of M if P is projective and Ker f < P.
In [7] Bican et al. proved that all modules have flat covers. In contrast, an arbitrary
module may not have a projective cover, in general. The rings over which all right
modules have projective covers are exactly the right perfect rings (see, [8]). In this
case, it is of interest to know when the flat cover of a given module is projective.
It is well known that, a ring R is right perfect if and only if flat cover of any
right R-module is projective. The rings with the property that flat covers of finitely
generated right R-modules are projective are characterized in [1, 2]. In [1, 2], a
ring R is called almost-perfect (A-perfect) if every flat R-module is R-projective.
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They proved that the right A-perfect rings are exactly those rings R over which flat
covers of finitely generated modules are projective.

Let R be aring and S be the class of all representatives of simple right R-modules
(i.e. each element of S is isomorphic to R/I for some maximal right ideal I of R).
We call R right B-perfect if for every flat module F and S € S, and homomorphisms
f:R— S, h: F — S there exists a homomorphism g: F' — R such that h = fg. It
is clear that any right A-perfect ring is right B-perfect.

The main objective of this paper is to introduce and give several characteri-
zations of the rings over which flat covers of simple modules are projective. We
prove that, R is right B-perfect if and only if flat covers of simple right R-modules
are projective if and only if R is semiperfect and flat covers of simple modules are
finitely generated (Theorem 2.4). We also prove that, R is right B-perfect if and
only if R is semilocal and J(R) is cotorsion if and only if R and the maximal right
ideals of R are cotorsion (Theorem 2.11).

For a ring R and a right R-module M, J(R) and J(M) will stand for the
Jacobson radical of R and the Jacobson radical of M, respectively.

2. Characterizations of Right B-Perfect Rings

The following lemma characterizes when the flat cover of a given module is projec-
tive. The proof is easy and standard, we include it for completeness.

Lemma 2.1. Let p:F — M be a flat cover of M. Then, the following are
equivalent.

(1) F is projective.

(2) There exists an epimorphism f: P — M with P projective such that the induced
map Hom(F, P) — Hom(F, M) is surjective.

(3) There exists a flat precover f: P — M with P projective.

Proof. (1) = (2): Take P = F, then the proof is clear.

(2) = (3): Let G be a flat module and h € Hom(G, M). By (2) there exist
a € Hom(F, P) such that ¢ = fa. On the other hand, since ¢: F — M is a flat
cover, h = ¢ for some 3 € Hom(G, F'). Hence we obtain the following diagram:

r<2 ¢

I~
o h
f
P——M
In this case, from h = ¢f and ¢ = fa, we get h = f(af) with a8 € Hom(G, P).
This proves (3).
(3) = (1): By [9, Theorem 1.2.7], M has a flat cover that is a direct sum-

mand of P. Therefore F' is projective, because flat covers (of M) are isomorphic
(see, [9, Theorem 1.2.6]). O
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In [1, Theorem 3.7], it is shown that a ring R is right A-perfect if and only if the
flat cover of any finitely generated right R-module is projective. From Lemma 2.1
we see that, an arbitrary module has a projective flat cover if and only if it has a
projective flat precover. Hence the following corollary is clear.

Corollary 2.2. A ring R is right A-perfect if and only if any finitely generated
right R-module has a projective flat precover.

Recall that a ring R is right (or left) semiperfect if R is semilocal (i.e. R/J(R) is
semisimple artinian) and the idempotents of R/J(R) lift to R. A ring R is semiper-
fect if and only if every simple right (left) R-module has a projective cover [8, 42.6].
Over a semiperfect ring any finitely generated flat right R-module is projective. As
we have mentioned, a flat cover ¢ : F — M of a module M need not be a projec-
tive cover. But, in case, F' is projective then Kerp <« F and so ¢: F — M is a
projective cover (see, [9, Theorem 1.2.12]). We shall use these facts in the sequel.
Recall that, if R is a semilocal ring then J(M) = M.J(R) for any right R-module
M (see, [3, Corollary 15.18]).

Lemma 2.3. Let R be a semilocal ring and Xpr be a simple right R-module. If
¢:F — X is the flat cover of X, then the kernel Ker ¢ = F.J(R). Moreover, F is
indecomposable.

Proof. See the proof of [6, Corollary 23]. O

Theorem 2.4. For a ring R the following statements are equivalent:

(1) R is right B-perfect.

(2) Flat covers of simple modules are projective.

(3) R is semiperfect and flat covers of simple modules are cyclic.

(4) R is semiperfect and flat covers of simple modules are local.

(5) Flat covers of finitely generated semisimple modules are projective.

(6) R is semiperfect and flat covers of finitely generated semisimple modules are

finitely generated.

Proof. (1) = (2) This is clear from the definition of B-perfect rings.

(2) = (3) Let f: F — X be the flat cover of the simple right R-module X. By
(2) F is projective and so Ker f <« F. Now we have F/Ker f ~ X is cyclic and
Ker f < F. Hence F is cyclic. On the other hand f:F — X is a projective cover
of the simple R-module X. Therefore R is semiperfect.

(3) = (4) Let f:F — X be the flat cover of the simple right R-module X. We
only need to prove that F' is local. By Lemma 2.3 Ker f = F.J where J = J(R).
Since F/F.J ~ X is simple and F.J C J(F), we get F.J is the unique maximal
submodule of F. On the other hand F' is finitely generated. Therefore F.J is the
largest submodule of F, and so F' is a local module by [8, p. 351].
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(4) = (5) Finitely generated flat modules are projective over semiperfect rings.
Let M = @?:1 S; be a semisimple module and f;: F; — S; be the flat cover of 5;
foreachi=1,...,n. Then @, fi: D;_, F; — @B, S is a flat cover of P, S;
by [9, Theorem 1.2.10]. By hypothesis F; is projective for each i = 4,...,n, hence
@, F; is projective.

(5) = (6) Flat cover of any simple module is projective by (5), hence R is
semiperfect. Now, if M is a finitely generated semisimple module and ¢: F — M is
a flat cover, then F is projective by (5). Then Ker ¢ < F' and this implies that F'
is finitely generated as F'/ Ker ¢ ~ M is finitely generated.

(6) = (1) Let X be a simple module and f: R — X be an epimorphism. Let G
be a flat module and ¢g: G — X be a homomorphism. If ¢: F — X is a flat cover,
by (6) F is finitely generated. Then F' is projective as R is semiperfect. Therefore
there is a homomorphism h: F — R such that f = ¢h. Then by Lemma 2.1 there
is a homomorphism ¢: G — R such that g = ft. Hence R is B-perfect. O

As we have mentioned, the class of A-perfect rings is contained in the class of
B-perfect rings. An example of a B-perfect ring which is not A-perfect is constructed
in [1] as follows.

Example 2.5 ([1, Examples 2.17, 2.22]). Let K be a field and S = K|[y1, v, .. .]
be the polynomial ring in indeterminates yi,¥ys,... over K. Let L be the ideal of
S generated by {y;y;|i,7 = 1,2,...}. Consider the ring R = S/L. Then the ring
RJ[x]] is not A-perfect by [1, Example 2.17]. On the other hand, flat cover of any
simple R][[x]]-module is projective by [1, Example 2.22]. Hence R[[z]] is a B-perfect
ring by Theorem 2.4(1) < (2).

Theorem 2.6. Let R be any ring. Then R is right B-perfect if and only if R
is semilocal and any indecomposable flat right R-module with a unique maximal
submodule is projective.

Proof. Necessity: Suppose R is right B-perfect. Then R is semiperfect by Theo-
rem 2.4. Let G be an indecomposable flat module with a unique maximal submodule
K.Let h: F — G/K be the flat cover of the simple module G/K. Then F is projec-
tive by Theorem 2.4, and so Kerh < F. If 7: G — G/K is an epimorphism, then,
by definition of flat cover, there exists g: G — F' such that the following diagram
is commutative.
Ve
g - l
Ve ™
Ve

»

From the proof of [9, Theorem 1.2.12], g is an epimorphism, and so the map g: G —
F splits. But G is indecomposable, so that g must be an isomorphism. Hence G is
projective.
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Sufficiency: Let X be a simple module and f:F — X be the flat cover of X.
Then Ker f = F.J is the unique maximal submodule of F'. Moreover F is indecom-
posable by [5, Theorem 15]. So that F' is projective by the hypothesis. Hence R is
right B-perfect by Theorem 2.4. |

Definition 2.7. A right R-module C is said to be cotorsion if Exth(F, K) = 0 for
any flat right R-module F.

Lemma 2.8 ([9, Lemma 2.1.1]). Let f: F — M be a flat cover of the R-module
M and K = Ker(f). Then for any flat R-module G, Exth(G,K) = 0, i.e. K is
cotorsion.

Lemma 2.9 ([9, Proposition 3.3.3]). Let I be an ideal of R with I # R. If C
is cotorsion as an R/I-module, then it is cotorsion as an R-module.

The following lemma is an easy consequence of Lemma 2.9.

Lemma 2.10. Let R be a semilocal ring. Then any semisimple R-module is
cotorsion.

Proof. Suppose M is a semisimple module. Then M is an R/J(R)-module as
M.J(R) = 0. Since R is semilocal, R/J(R) is a semisimple ring. So that every
R/J(R)-module is cotorsion. In particular M is a cotorsion R/.J(R)-module. There-
fore M is a cotorsion R-module by Lemma 2.9. |

It is well known that, the right perfect rings are exactly those rings R over which
every flat right R-module is projective. This implies that, R is right perfect if and
only if every right R-module is cotorsion. In [1, Theorem 2.13], the authors prove
that a ring R is right A-perfect if and only if any right ideal of R is cotorsion.

We have the following corresponding result for right B-perfect rings.

Theorem 2.11. For a ring R the following statements are equivalent:

R is right B-perfect.
every right ideal of R containing J(R) is cotorsion.

Proof. (1) = (2) By Theorem 2.4, R is semiperfect and flat covers of finitely
generated semisimple modules are projective. Therefore flat covers and projective
covers of finitely generated semisimple modules coincide. Since J(R) < R, the usual
map 7: R — R/J(R) is a projective (flat) cover. Then Kerm = J(R) is cotorsion
by Lemma 2.8. Let I be a right ideal containing J(R). Since R is semilocal and
I/J(R) is semisimple and finitely generated, I/J(R) is a cotorsion R-module by
Lemma 2.10. Since cotorsion modules are closed under extension and J(R), I/J(R)
are cotorsion, I is cotorsion.
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(2) = (3) clear.

(3) = (1) Let F be a flat module and Ir be a maximal right ideal of R. By
hypothesis Extp(F,I) = 0. Therefore by applying the Hom functor to the exact
sequence

0—-I—R—R/I—0
we get the epimorphism
Hom(F, R) — Hom(F,R/I) — 0.

This implies that R is B-perfect.

(4) = (2) Let I be a right ideal containing J(R). Then Since R is semilocal,
R/J(R) is semisimple, and so I/J(R) is finitely generated and semisimple. Then
I/J(R) is a cotorsion R-module by Lemma 2.10. By hypothesis J(R) is also
cotorsion. Hence I is cotorsion, because cotorsion modules are closed under

extension.
(1) = (4) By Theorem 2.4, R is semiperfect, and so it is semilocal. By repeating
the arguments in the proof of (1) = (2) we obtain that J(R) is cotorsion. m|

Example 2.12. Let Z be the ring of integers and p be a prime integer. Consider
the ring R = {$|ab € Z, (b,p) = 1}. Then R is a local ring with the unique
maximal ideal pR. The flat cover F' of R/pR is isomorphic to the set of p-adic
integers (see, [9, Theorem 1.3.8] and the example after [9, Theorem 1.3.8]). It is
known that F'is not a projective R-module. Hence R is not B-perfect. On the other
hand, since R is a local ring it is semiperfect.

Actually, we have the following for local rings.

Proposition 2.13. Let R be a local ring. Then R is B-perfect if and only if the
usual epimorphism m: R — R/J(R) is a flat cover of R/J(R).

Proof. Suppose R is B-perfect. Then J(R) is cotorsion by Theorem 2.11. So that
7:R — R/J(R) is a flat precover by [9, Proposition 2.1.3]. Let F* — R/J(R) be
a flat cover of R/J(R). Then F is a direct summand of R by [9, Theorem 1.2.7].
But R is indecomposable, so that R ~ F. Hence 7: R — R/J(R) is a flat cover of

R/J(R).

Conversely, suppose m: R — R/J(R) is flat cover. Then Kerm = J(R) is cotor-
sion, hence R is B-perfect by Theorem 2.11. O
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