Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/6764
Title: | Categorization of Species Based on Their Micrornas Employing Sequence Motifs, Information-Theoretic Sequence Feature Extraction, and K-Mers | Authors: | Yousef, Malik Nigatu, Dawit Levy, Dalit Allmer, Jens Henkel, Werner |
Keywords: | Information theory MicroRNAs Machine learning Sequence motifs RNA |
Publisher: | Springer Verlag | Source: | Yousef, M., Nigatu, D., Levy, D., Allmer, J., and Henkel, W. (2017). Categorization of species based on their microRNAs employing sequence motifs, information-theoretic sequence feature extraction, and k-mers. Eurasip Journal on Advances in Signal Processing, 2017(1). doi:10.1186/s13634-017-0506-8 | Abstract: | Background: Diseases like cancer can manifest themselves through changes in protein abundance, and microRNAs (miRNAs) play a key role in the modulation of protein quantity. MicroRNAs are used throughout all kingdoms and have been shown to be exploited by viruses to modulate their host environment. Since the experimental detection of miRNAs is difficult, computational methods have been developed. Many such tools employ machine learning for pre-miRNA detection, and many features for miRNA parameterization have been proposed. To train machine learning models, negative data is of importance yet hard to come by; therefore, we recently started to employ pre-miRNAs from one species as positive data versus another species’ pre-miRNAs as negative examples based on sequence motifs and k-mers. Here, we introduce the additional usage of information-theoretic (IT) features. Results: Pre-miRNAs from one species were used as positive and another species’ pre-miRNAs as negative training data for machine learning. The categorization capability of IT and k-mer features was investigated. Both feature sets and their combinations yielded a very high accuracy, which is as good as the previously suggested sequence motif and k-mer based method. However, for obtaining a high performance, a sufficiently large phylogenetic distance between the species and sufficiently high number of pre-miRNAs in the training set is required. To examine the contribution of the IT and k-mer features, an information gain-based feature ranking was performed. Although the top 3 are IT features, 80% of the top 100 features are k-mers. The comparison of all three individual approaches (motifs, IT, and k-mers) shows that the distinction of species based on their pre-miRNAs k-mers are sufficient. Conclusions: IT sequence feature extraction enables the distinction among species and is less computationally expensive than motif calculations. However, since IT features need larger amounts of data to have enough statistics for producing highly accurate results, future categorization into species can be effectively done using k-mers only. The biological reasoning for this is the existence of a codon bias between species which can, at least, be observed in exonic miRNAs. Future work in this direction will be the ab initio detection of pre-miRNA. In addition, prediction of pre-miRNA from RNA-seq can be done. | URI: | http://doi.org/10.1186/s13634-017-0506-8 http://hdl.handle.net/11147/6764 |
ISSN: | 1687-6180 |
Appears in Collections: | Molecular Biology and Genetics / Moleküler Biyoloji ve Genetik Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection Sürdürülebilir Yeşil Kampüs Koleksiyonu / Sustainable Green Campus Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Show full item record
CORE Recommender
SCOPUSTM
Citations
14
checked on Jan 10, 2025
WEB OF SCIENCETM
Citations
11
checked on Dec 28, 2024
Page view(s)
364
checked on Jan 13, 2025
Download(s)
148
checked on Jan 13, 2025
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.