Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/6760
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAlizade, Rafail-
dc.contributor.authorGüngör, Serpil-
dc.date.accessioned2018-01-26T13:10:41Z-
dc.date.available2018-01-26T13:10:41Z-
dc.date.issued2017-12-
dc.identifier.citationAlizade, R., and Güngör, S. (2017). Co-coatomically supplemented modules. Ukrainian Mathematical Journal, 69(7), 1007-1018. doi:10.1007/s11253-017-1411-xen_US
dc.identifier.issn0041-5995-
dc.identifier.urihttp://doi.org/10.1007/s11253-017-1411-x-
dc.identifier.urihttp://hdl.handle.net/11147/6760-
dc.description.abstractIt is shown that if a submodule N of M is co-coatomically supplemented and M/N has no maximal submodule, then M is a co-coatomically supplemented module. If a module M is co-coatomically supplemented, then every finitely M-generated module is a co-coatomically supplemented module. Every left R-module is co-coatomically supplemented if and only if the ring R is left perfect. Over a discrete valuation ring, a module M is co-coatomically supplemented if and only if the basic submodule of M is coatomic. Over a nonlocal Dedekind domain, if the torsion part T(M) of a reduced module M has a weak supplement in M, then M is co-coatomically supplemented if and only if M/T (M) is divisible and TP (M) is bounded for each maximal ideal P. Over a nonlocal Dedekind domain, if a reduced module M is co-coatomically amply supplemented, then M/T (M) is divisible and TP (M) is bounded for each maximal ideal P. Conversely, if M/T (M) is divisible and TP (M) is bounded for each maximal ideal P, then M is a co-coatomically supplemented module.en_US
dc.language.isoenen_US
dc.publisherSpringer Verlagen_US
dc.relation.ispartofUkrainian Mathematical Journalen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectModules (Algebra)en_US
dc.subjectDedekind domainen_US
dc.subjectSupplement submoduleen_US
dc.titleCo-coatomically supplemented modulesen_US
dc.typeArticleen_US
dc.institutionauthorGüngör, Serpil-
dc.departmentİzmir Institute of Technology. Mathematicsen_US
dc.identifier.volume69en_US
dc.identifier.issue7en_US
dc.identifier.startpage1007en_US
dc.identifier.endpage1018en_US
dc.identifier.wosWOS:000417086900001en_US
dc.identifier.scopus2-s2.0-85035340212en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1007/s11253-017-1411-x-
dc.relation.doi10.1007/s11253-017-1411-xen_US
dc.coverage.doi10.1007/s11253-017-1411-xen_US
local.message.claim2022-06-06T16:26:02.031+0300*
local.message.claim|rp00850*
local.message.claim|submit_approve*
local.message.claim|dc_contributor_author*
local.message.claim|None*
dc.identifier.wosqualityQ4-
dc.identifier.scopusqualityQ3-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.openairetypeArticle-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.grantfulltextopen-
crisitem.author.dept04.02. Department of Mathematics-
Appears in Collections:Mathematics / Matematik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
6760.pdfMakale141.82 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 29, 2024

WEB OF SCIENCETM
Citations

1
checked on Oct 26, 2024

Page view(s)

310
checked on Dec 2, 2024

Download(s)

204
checked on Dec 2, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.