Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/6298
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAlizade, Rafail-
dc.contributor.authorBüyükaşık, Engin-
dc.date.accessioned2017-10-03T10:47:51Z-
dc.date.available2017-10-03T10:47:51Z-
dc.date.issued2017-01-
dc.identifier.citationAlizade, R., and Büyükaşık, E. (2017). Poor and pi-poor Abelian groups. Communications in Algebra, 45(1), 420-427. doi:10.1080/00927872.2016.1175585en_US
dc.identifier.issn0092-7872-
dc.identifier.urihttp://doi.org/10.1080/00927872.2016.1175585-
dc.identifier.urihttp://hdl.handle.net/11147/6298-
dc.description.abstractIn this paper, poor abelian groups are characterized. It is proved that an abelian group is poor if and only if its torsion part contains a direct summand isomorphic to (Formula presented.) , where P is the set of prime integers. We also prove that pi-poor abelian groups exist. Namely, it is proved that the direct sum of U(ℕ), where U ranges over all nonisomorphic uniform abelian groups, is pi-poor. Moreover, for a pi-poor abelian group M, it is shown that M can not be torsion, and each p-primary component of M is unbounded. Finally, we show that there are pi-poor groups which are not poor, and vise versa.en_US
dc.language.isoenen_US
dc.publisherTaylor and Francis Ltd.en_US
dc.relation.ispartofCommunications in Algebraen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectInjective modulesen_US
dc.subjectPoor abelian groupsen_US
dc.titlePoor and pi-poor Abelian groupsen_US
dc.typeArticleen_US
dc.authoridTR130906en_US
dc.institutionauthorBüyükaşık, Engin-
dc.departmentİzmir Institute of Technology. Mathematicsen_US
dc.identifier.volume45en_US
dc.identifier.issue1en_US
dc.identifier.startpage420en_US
dc.identifier.endpage427en_US
dc.identifier.wosWOS:000386155500033en_US
dc.identifier.scopus2-s2.0-84990927838en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1080/00927872.2016.1175585-
dc.relation.doi10.1080/00927872.2016.1175585en_US
dc.coverage.doi10.1080/00927872.2016.1175585en_US
local.message.claim2022-06-06T16:27:54.953+0300*
local.message.claim|rp00850*
local.message.claim|submit_approve*
local.message.claim|dc_contributor_author*
local.message.claim|None*
dc.identifier.wosqualityQ3-
dc.identifier.scopusqualityQ2-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept04.02. Department of Mathematics-
crisitem.author.dept04.02. Department of Mathematics-
Appears in Collections:Mathematics / Matematik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
6298.pdfMakale179.04 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

13
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

13
checked on Nov 16, 2024

Page view(s)

380
checked on Nov 18, 2024

Download(s)

250
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.