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1. Introduction

Let R be a ring with an identity element and Mod-R be the category of right R-modules. Recall that
a right R-module M is said to be an N-injective (or injective relative to N) if for every submodule K
of N and every morphism f : K — M there exists a morphism f : N — M such that f|x = f.
For a module M, as in [2], the injectivity domain of M is defined to be the collection of modules N
such that M is an N-injective, that is, Jn~'(M) = {N € Mod — R|M is N-injective}. Clearly, for any
right R-module M, semisimple modules in Mod- R are contained in Jn~!(M), and M is an injective if
and only if Jn~!(M) =Mod-R. Following [1], M is called poor if for every right R-module N, M is an
N-injective only if N is semisimple, i.e., Jn~! (M) is exactly the class of all semisimple right R-modules.
Poor modules exist over arbitrary rings [3, Proposition 1]. Although poor modules exist over arbitrary
rings, their structure is not known over certain rings including also the ring of integers.

A right R-module N is pure-split if every pure submodule of N is a direct summand. Let K and N
be right R-modules. K is an N-pure-injective if for each pure submodule L of N every homomorphism
f : L — K can be extended to a homomorphism g : N — K. Following [7], a right R-module M is
called pure-injectively poor (or simply pi-poor) if whenever M is an N-pure-injective, then N is pure-split.
It is not known whether pi-poor modules exist over arbitrary rings. In particular, in [7], some classes of
abelian groups that are not pi-poor are given but the authors point out that they do not know whether a
pi-poor abelian group exists.

The purpose of this paper is to give a characterization of poor abelian groups and also to prove that
pi-poor abelian groups exist.

Namely, in Section 3, we prove that an abelian group G is poor if and only if the torsion part of G
contains a direct summand isomorphic to ®pepZ,, where P is the set of prime integers (Theorem 3.1).

Section 4 is devoted to the proof of the existence of pi-poor abelian groups. Let {A,|y € T'} bea
complete set of representatives of isomorphism classes of reduced uniform groups. We prove that the
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group M = P, A;N) is pi-poor (Theorem 4.1). In addition, it is proved that if G is a pi-poor abelian
group, then G is not torsion, and the p-primary component Tj,(G) of G is unbounded for each prime p.

2. Definitions and preliminaries

We recall some definitions and results which will be useful in the sequel. For more details, we refer the
reader to [5]. By group, we will mean an abelian group throughout the paper. Let p € P be a prime
integer. A group G is called p-group if every nonzero element of G has order p” for some n € Z™. For
a group G, T(G) denotes the torsion submodule of G. The set T,(G) = {a € G|pka = 0 for some k €
7t} is a subgroup of G, which is called the p-primary component of G. For every torsion group G, we
have G = @,cpTp(G). A subgroup A of a group B is pure in B if nA = A N nB for each integer n. A
monomorphism (resp. epimorphism) o : A — B of abelian groups is called pure if «(A) (resp. Ker(w))
is pure in B. For any group G, the subgroups T(G) and T,(G) are pure in G. A group G is said to be
bounded if nG = 0, for some nonzero integer n. Bounded groups are direct sum of cyclic groups [5,
Theorem 17.2]. A group G is called a divisible group if nG = G for each positive integer n. A group G
is called a reduced group if G has no proper divisible subgroup. Note that, since Z is Noetherian, every
group G contains a largest divisible subgroup. Therefore, G can be written as G = N @ D, where N is
reduced and D is divisible subgroup of G.

Definition 2.1 (see [5]). Let p € P. A subgroup B of a group A is called a p-basic subgroup of B if it
satisfies the following three conditions:
(i) Bisadirect sum of cyclic p-groups and infinite cyclic groups;
(ii) Bis p-purein A;
(iii) A/Bis p-divisible, i.e., p(A/B) = A/B.

Lemma 2.2.
(a) [5, Theorem 32.3] Every group G contains a p-basic subgroup for each p € P.
(b) [5, Theorem 27.5] If H is a pure and bounded subgroup of a group G, then H is a direct summand of G.

For q # p g-basic subgroups of p-groups are 0, so only p-basic subgroups of p-groups may be
nontrivial. Therefore, they are usually called simply basic subgroups. Clearly, basic subgroups of p-
groups are pure. Subgroups of the group of the rational integers Q are called rational groups. Let A
be a uniform group. Then, it is easy to see that either A is isomorphic to a rational group or A = Z,» for
some p € Pand n € Z*. For a torsion-free group G, we shall denote the (torsion-free) rank (=uniform
dimension) of G by ro(G) [5]. By [5, page 86, Example 3], #o(G) = ro(H) + ro(G/H) for each subgroup
H of G. A torsion-free group G is said to be completely decomposable if G = @K, where I is an index
set and each K; is isomorphic to a rational group, i.e., 7o(K;) = 1 for eachi € I.

3. Poor Abelian groups

In this section, we give a characterization of poor groups. The authors prove that the group ®,cpZ, is
poor [1]. The following result shows that this group is crucial in investigation of poor groups.

Theorem 3.1. A group is poor if and only if its torsion part has a direct summand isomorphic to ©pepZyp.

Proof. To prove the necessity, let G be a poor group and let p be any prime. If T,(G) = 0, then G is an
N-injective for every p-group N, therefore T,(G) # 0. If every element of order p of G is divisible by p,
then G is Zy: -injective since Z,> has only one nontrivial subgroup: pZ2. So there is at least one element
ap with |a,| = p, that is, not divisible by p. Then the cyclic group < a, > is a p-pure subgroup of T,,(G),
therefore a pure subgroup of T,(G). Since bounded pure subgroups are direct summands, < a, > is a
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direct summand of T, (G). Hence ®pep < ap > is a direct summand of ©pepT,(G) = T(G). Clearly,
Spep < ap >= @pepr.

Conversely, suppose that T(G) contains a direct summand isomorphic to ®Z,. Let V be a direct
summand of T(G) such that V' = Z,. Then, V is pure in G because T(G) is pure in G. So V is a direct
summand in G by [5, Theorem 27.5]. This implies, for each prime p, G contains a direct summand
isomorphic to Z,. Now, suppose G is an N-injective for some group N. Then Z, is an N-injective for
each prime p. Suppose that N is not semisimple (not elementary in terminology of [5]). Then, there is
an element a of infinite order or with o(a) = p”, where p is a prime and n > 1. In first case, (a) = Z
and in second case, (a) = Zyn. So Z, must be Z-injective or Zyn-injective by [8, Proposition 1.4]. But
the homomorphism f : pZ — Z, with f(p) = 1 cannot be extended to g : Z — Z, since otherwise
1 =f(p) = g(p) = pg(1) = 0 and Z, is isomorphic to the subgroup (p"~') of Zyn, which is not a direct
summand of Zpn. So in both cases we get a contradiction, that is, N is semisimple. O

The following is a consequence of Theorem 3.1.

Corollary 3.2. For a group G, the following are equivalent.

(1) Gis poor.

(2) The reduced part of G is poor.

(3) T(G) is poor.

(4) For each prime p, G has a direct summand isomorphic to Z,.

4. Pi-poor Abelian groups

The authors investigate the notion of pi-poor module and study properties of these modules over various
rings [7]. In particular, they give some classes of groups that are not pi-poor and point out that they do
not know whether a pi-poor group exists or not. In this section, we shall prove that pi-poor groups exist.

Theorem 4.1. Let {A,|y € I'} be a complete set of representatives of isomorphism classes of uniform
groups. Then the group
— M)
v=@a!

yel

is pi-poor.

Before proving the theorem, we will first give some lemmas. Throughout this section, M denotes the
group given in Theorem 4.1.
The following result is well known. We include it for completeness.

Lemma 4.2. Let R be a ring and L, N be right R-modules. Let K be a pure submodule of N. If L is an
N-pure-injective, then L is both K-pure-injective and N /| K-pure-injective.

Proof. Let A be a pure submodule of K and f : A — L be a homomorphism. Then A is pure in N, and
so f extends toamap g : N — L. Clearly, g|[x : K — L is an extension of f to K. Hence L is K-pure-
injective. Now, let X/K be a pure submodule of N/K and f : X/K — L be a homomorphism. Since K
is pure in N and X/K is pure in N/K, X is pure in N. Therefore, there is a homomorphism g : N — L
such that fr’ = gi, where i : X — N is the inclusion and 7" : X — X/K is the usual epimorphism.
Since g(K) = 0, Ker(r) € Ker(g), where w : N — N/K is the usual epimorphism. Therefore, there is a
homomorphism h : N/K — L such that hw = g. Then for each x € X, h(x + K) = h(w(x)) = g(x) =
(fr")(x) = f(x + K). That is, h extends f. Hence, L is an N/K-pure-injective. O
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Lemma 4.3. Let G be a reduced torsion group. The following are equivalent.
(1) M is G-pure-injective.

(2) T,(G) is bounded for each p € P.

(3) G is pure-split.

Proof.

(1) = (2) Write G = @pepTy(G). Let By(G) be a basic subgroup of T,(G). Then B, (G) is pure in
T,(G), and so in G and T,(G) /B, (G) is divisible. We claim that B,(G) is bounded. Suppose the contrary
that B, (G) is not bounded. Then for every positive integer 1, B,(G) contains an element of order p”. In
this case, since B, (G) is a direct sum of cyclic p-groups, there is an epimorphism

By(G) > Zyw — 0,

where the restrictions of g to the cyclic summands of B, (G) are monic. It can be proved as in [5, Lemma
30.1] that g is a pure epimorphism, i.e., K = Ker(g) is a pure submodule of B,(G). Now, K is pure in
By (G) and is a direct sum of cyclic p-groups. Since M contains a direct summand isomorphic to K, and
By (G) is a pure subgroup of G, K is By (G)-pure-injective. Therefore B,(G) = K @ Zyeo. This contradicts
with the fact that B,(G) is reduced. Hence B,,(G) is bounded, and so B, (G) is a direct summand of G.
The fact that G is reduced and T, (G) /B, (G) divisible implies that B,(G) = T,(G).

(2) = (3) Let H be a pure subgroup of G. Since G = @®pcpTp(G) and H = @pepTp(H), T,(H)
is a pure subgroup of T,(G). Then, T,(H) is a direct summand of T,(G) by [5, Theorem 27.5]. Let
Tp(G) = Tp(H) & Ny, where N, < G. Then G = @pep[T,(H) @ Np] = (BpepTp(H)) @ (BpepNy) =
H @ (®pepN,). Hence G is pure-split.

(3) = (1) Clear by the definition. O

Remark 4.4. Pure-split groups are completely characterized in [4]. The implications (2) < (3) in
Lemma 4.3 also can be found in [4].

Lemma 4.5. Let B be a p-group. Suppose that M is B-pure-injective. Then B is pure-split.

Proof. Let D be the divisible subgroup of B and A be a pure subgroup of B. Then B = C @ D for some
reduced group C. Let Dy be the divisible subgroup of A. Then D4 < D and D = D; @ Dy for some
D1 <D.SoB=C®D; ®Dy = E® Dy, where E = C® D;. By modular law, A = (ENA) @ D4. Then
L = ENAisapure submodule of B. Hence, M is L-pure-injective, and L = A/D, is reduced. Therefore,
L is bounded by Lemma 4.3. Since L is pure in B, L is also pure in E. Then, E = K @ L for some K < E
by [5, Theorem 27.5]. ThenB=E®Dy = K@®LP® Dy = K@ A. So A is a direct summand in B. Hence
B is pure-split. O

Lemma 4.6. If N is a reduced torsion-free group such that M is an N-pure-injective then N is pure-split.
Moreover, N is completely decomposable with finite rank.

Proof. Take any 0 # a; € N andlet G; = {x € N|mx € (a;)for some 0 # m € Z} (thatis, G is
the subgroup purely generated by a;). Clearly, G; is a pure subgroup of N and isomorphic to a rational
group, so M has a direct summand isomorphic to G;. Therefore, G; is a direct summand of N, that is,
N = G; @ N; for some N1 < N.If N; # 0, we can find in similar way a pure subgroup G, of N; purely
generated by an element a,. Clearly, M is an Nj-pure-injective, so Ny = G, @ N;. The same can be
done for N, if N3 # 0 and so on. If this process continues infinitely, then N contains a subgroup ®°, G;
which is pure as a direct limit of pure subgroups. Therefore, M is ®7°, G;-pure-injective. For each a;,
i = 1,2,..., there is a homomorphism f; : (a;) — Q with f(a;) = ;. Since Q is an injective, there is



Downloaded by [Izmir Yuksek Teknologi Enstitusu] at 03:38 03 October 2017

424 R. ALIZADE AND E. BUYUKASIK

a homomorphism f : ®°,G; — Q with f(a;) = fi(a;) = % Clearly, f is an epimorphism. Since Q is
torsion-free, K = Ker(f) is a pure subgroup of ®7°, G;. Let I" be the set of all completely decomposable
pure subgroups of K and R be the set of all subgroups of K of rank 1. Define order < on I as follows:
BserS <X DseySif I € J € R.If Pis any chain in I, then UxepX is clearly a completely decomposable
and pure subgroup of K, since the direct limit of pure subgroups is pure. So by Zorn’s Lemma, there is a
maximal element B = @gc1Sin I'. Since K is countable T is also countable, so B is a direct summand of
K, thatis, K = B® C for some C < K. If C # 0, then as at the beginning of the proof, we can find a pure
subgroup of X of C of rank 1. Clearly, B@® X € I'. Contradiction with maximality of B. So C = 0. Then,
K is a direct summand of ©7°, G;. So ®°, G; = K® Q. But &2, G; is reduced. Contradiction. Thus, the
process must be finite, thatis, N = G @ G, @ - - - ® G, for some n € 7T . To show that N is pure-split,
let L be a pure subgroup of N. Then M is L-pure-injective, so it is the direct sum of groups of rank one of
finite number as we have proved above. Then, L is a direct summand of N, because N-pure-injectiveness
of M implies that the inclusion L — N is splitting. Hence, N is pure-split and completely decomposable
with finite rank. This completes the proof. O

Lemma 4.7. Let N be a torsion-free group. If M is an N-pure-injective, then N is pure-split.

Proof. Let K be a pure subgroup of N = A @ D, where D is the divisible subgroup of N. Let Dx be the
divisible subgroup of K. Then Dx < D, and so D = D; @ D forsome D; < D.SoN = A®D; @Dk =
E ® Dk, where E = A @ D;. By modular law, K = (EN K) @ Dk. Denote EN K = L. Then, L = K/Dg
is reduced and pure in N. Hence, M is an L-pure-injective, and so L = @_, R; for some rational groups
Ry, ... Ry, by Lemma 4.6. Then, M contains a direct summand isomorphic to L. So the inclusion L — N
splits, i.e., N = L @& H for some H < N. Since L is reduced, Dx < H. ThenN = L®Dx ®H =K@ H'.
This implies that N is pure-split. O

Definition 4.8 (See, [6]). Let G be a torsion-free group and a € G. Given a prime p, the largest integer
k such that p¥|a holds is called the p-height hy(a) of a; if no such maximal integer k exists, then we set
hp(a) = oo. The sequence of p-heights

x(a) = (hp, (@), hy, (@), .. .. hp,(a),...)

is said to be the characteristic of a. Two characteristics (ky, k2, .. .) and (I1, b, . . .) are equivalent it k,, # 1,
holds only for a finite number of # such that in case k,, # I, both k, and [, are finite. An equivalence
class of characteristics is called a type. G is called homogeneous if all nonzero elements of G are of the
same type.

Corollary 4.9. Let N be a torsion-free reduced group. The following are equivalent.
(1) M is an N-pure-injective.

(2) N is pure-split.

(3) N is a completely decomposable homogeneous group of finite rank.

Proof.
(1) & (2) ByLemma4.6.

(2) & (3) See [4] or [6, Example 8, page 116]. L]
Now, we can prove our theorem.

Proof of Theorem 4.1. Let M be G-pure-injective for some group G. We have G = N @ D for some
reduced group N and a divisible group D. Then M is an N-pure-injective, and since T(N) is a pure
subgroup of N, M is T(N)-pure-injective and M is an N/T(N)-pure-injective. Then, by Lemmas 4.3
and 4.6, T(N) = @pepBp(N) and N/T(N) = @icK;, where for each p € P, B,(N) is a bounded
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p-group, I is a finite index set, and each K; is isomorphic to a rational group. We claim that T(N) is a
direct summand in N, that is, the short exact sequence:

E:0—-> T(N) > N— N/T(N) —> 0

is splitting. By [5, Theorem 52.2], there is a natural isomorphism

Ext(N/T(N), T(N)) = Ext (@ K, T(N)) ~ ]_[ Ext(K;, T(N))
iel iel
induced by the inclusions «; : K; — @;c[K;. Therefore, it is sufficient to prove that each short exact
sequence:

Eoj: 0 — T(N)—>N/1>Kj—>0

is splitting. We have the following commutative diagram with exact columns and rows.

0 0
E:0 T(N) N—TL K, 0
| :
Ea; : 0 —> T(N) N ®ierK; 0
Dinj Ki == @iz; Ki
0 0

Since @®;crK; is torsion free, N’ is a pure subgroup of N, therefore M is an N’-pure-injective. There is a
countable set {ni|k = 1,2,...} in N’ such that the elements f (1) generate K. By [5, Proposition 26.2],
there is a countable pure subgroup L of N’ containing the subgroup Y, Zny. Then, M is an L-pure-
injective as well. Clearly, f(L) = K; and Ker(f|L) = T(L). Since L is countable, T(L) is a countable
subgroup of T(N). But T(N) is a direct sum of cyclic primary groups, therefore T(L) is a countable
direct sum of cyclic primary groups and hence is isomorphic to a direct summand of M. Since T'(L) is
a subgroup of L and M is an L-pure-injective, T(L) is a direct summand of L. We have the following
commutative diagram with exact rows:

E:0 T(L) L K; 0
P
Ea;: 0 T(N) N’ K; 0

where 8 is the inclusion. Since [’ is splitting Eej = BIE is also splitting. So N = T(N) & K, where T(N)
and K are groups as in Lemmas 4.3 and 4.6, respectively. This proves our claim.
To prove that G is pure-split, take a pure subgroup A of G. By the first part of the proof, we have

G=N®&D=TIN)®KoTD)®&D =(TN) & TD) ®KeD)=T(G &G.

Then for each p € P, T,(A) is a pure subgroup of T,(G). Therefore, T, (A) is a direct summand of T, (G)
by Lemma 4.5. Then, T'(A) is a direct summand of T(G). We have a homomorphism f : A/T(A) —
G/T(G) defined by f(a + T(A)) = a+ T(G).If f(a+ T(A)) = 0,thena € T(G) N A = T(A), hence
a+ T(A) = 0, so f is a monomorphism. Now claim that Im(f) is a pure subgroup of G/T(G). To show
this, let a + T(G) = m(b + T(G)) for somea € A, b € G,0 # m € Z. Thena — mb € T(G),



Downloaded by [Izmir Yuksek Teknologi Enstitusu] at 03:38 03 October 2017

426 (&) R.ALIZADE AND E. BUYUKASIK

therefore ka = kmb for some 0 # k € Z. Since A is pure in G, ka = kma’ for some ' € A. Then
a —ma € T(A), hence a + T(A) = m(a’ + T(A)). So Im(f) is pure. Since G/T(G) = G is pure-
split by Lemma 4.7, f is splitting. As A is a pure subgroup of G, M is A-pure-injective. So again by the
first part of the proof A = T(A) & K’ for some K’ < A with K’ = A/T(A). Then the inclusion map
A=TA)®K — G=T(G) ® G is splitting, that is, A is a direct summand in G. This completes the
proof.

5. Structure of pi-poor Abelian groups

In this section, we prove some results concerning a possible structure of pi-poor groups.
Proposition 5.1. If G is pi-poor group, then Ty (G) is unbounded for each p € P.

Proof. Suppose G is pi-poor and T,(G) is bounded for some p € P. Then T,(G) is pure-injective and
T,(G) is a direct summand of G, because T,(G) is also pure in G. Consider the group @72, Z,». We
claim that G is @2, Z,n-pure-injective. Let H be a pure subgroup of ®;2,Zyn and f : H — G be
a homomorphism. Since H is a p-group, f(H) < T,(G). So that f extends to a homomorphism & :
®,2,Zpn — G because T,(G) is pure-injective. This proves our claim.

We shall see that @2, Z» is not pure-split. There is an exact sequence:

E:0— K — &%, Zy > Zye — 0.

By the same arguments as in the proof of Lemma 4.3, E is pure, i.e., K is pure in @2, Zyn. Since @52 Zpn
is reduced, E does not split. Hence @2, Z,» is not pure-split. This contradicts with the fact that G is
pi-poor. Therefore, T),(G) can not be bounded. O

Let Q, be the localization of Z at the prime ideal pZ. Note that the elements of Q are of the form
ab~!, where a,b € Z, b # 0,and ged(b,p) = 1

Lemma 5.2. Let p be a prime integer and N be a reduced torsion group. Then for every homomorphism
f:Qp — N, Imf is bounded.

Proof. For every prime g # p, it is clear that qQ, = Qp, i.e., Q) is g-divisible, and T;(N) is reduced.
Then for g o f : Qp — T4(N), where my : N — Ty(N) is the natural projection, (74 0 f)(Q)) is a
g-divisible subgroup of T4(N). Therefore, (14 o f)(Q,) is divisible, and so 7, o f = 0 because T4(N) is
reduced. Thus Imf = f(Qp) € T,(N). Puta = f(1) and o(a) = p”, where o(a) the order of a. Let b1
be any element of Q, with gcd(c, p) = 1. Then ged(c, p") = 1, therefore cy + p"z = 1 for some y,z € Z.
Now b = bcy + bp"z, so bc™! = by + bp"zc™!. Note that ¢f (bp"zc™!) = bzp"f(1) = zp"a = 0. Let
x = f(bp"zc™1) and o(x) = p™. Since gcd(c, p™) = 1, we have cu + p™v = 1 for some u,v € Z. Then
x = ucx + vp"x = ucx = 0, and so f(bc™!) = f(by) + x = f(by) = byf(1) € (f(1)). Hence Imf is
contained in (f(1)), and so it is bounded. O

A cotorsion group G is a group satisfying Ext(Q, G) = 0.

Theorem 5.3. There is a group G such that G is not pure-split and every reduced torsion group N is
G-pure-injective. Hence a pi-poor group can not be torsion.

Proof. Fix any prime p. Since Q, is not cotorsion, Ext(Q, Q) # 0 (see [5], page 226, Example 15). So
there is a nonsplitting pure sequence:

0->Q—>G—-Q—0.
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Hence, G is not pure-split. For every prime g # p, Q, and Q are g-divisible, therefore G is also g-divisible.
We claim that N is G-pure injective. Without loss of generality, we can assume that Q, is a subgroup of
G and G/Q, = Q. Let K be any nonzero pure subgroup of G and f : K — N be any homomorphism,
where N is a torsion reduced group. Then, K is g-divisible for every prime g # p since K is a pure
subgroup of G and G is g-divisible. Clearly, the rank of K is at most 2. So have two cases:

Casel: ry(K) = 1.If K is also p-divisible, then K is divisible. So K = Q, and the inclusion K — G
splits, so f can be extended to a homomorphism f” : G — N. Now, let K be not p-divisible. K and Q,
are of the same type, and so K = Q,, (see [5, Theorem 85.1]). Therefore, Imf is bounded by Lemma 5.2.
Then, Imf is pure-injective, hence f : K — N can be extended to a homomorphism ' : G — Imf < N.

Case II:  rp(K) = 2: We claim that K = G. Otherwise, since G/K is a nonzero torsion-free group,
10(G/K) > 1. Then 2 = ry(G) = r9(K) + ro(G/K) > 2, a contradiction. Hence G = K.
As a consequence, N is G-pure-injective. This implies that N is not pi-poor. O

Corollary 5.4. Let M be a pi-poor group. Then M # T(M) and T,(M) is unbounded for every p € P.

Lemma 5.5. Let M and N be right R-modules. Assume that N is (pure-)injective. Then, M@ N is (pi-)poor
if and only if M is (pi-)poor.

Proof. For a right R-module B, it is clear that M @ N is B-(pure-)injective if and only if M is B-
(pure-)injective. O

Example 5.6. Let G = @pepZp. Then G is poor by Theorem 3.1. On the other hand, since T,,(G) = Z,
is bounded, G is not pi-poor by Proposition 5.1.

Example 5.7. Let M be as in Theorem 4.1 and let V be the sum of all direct summands isomorphic to
Zp. It M = V @ K, then K is pi-poor by Lemma 5.5. But K is not poor by Theorem 3.1, since K does not
contain a direct summand isomorphic to Zj. So pi-poor modules need not be poor.
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