Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/6125
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÇınaroğlu, İbrahim-
dc.contributor.authorBaştanlar, Yalın-
dc.date.accessioned2017-08-16T07:19:59Z-
dc.date.available2017-08-16T07:19:59Z-
dc.date.issued2016-02-01-
dc.identifier.citationÇınaroğlu, İ., and Baştanlar, Y. (2016). A direct approach for object detection with catadioptric omnidirectional cameras. Signal, Image and Video Processing, 10(2), 413-420. doi:10.1007/s11760-015-0768-2en_US
dc.identifier.issn1863-1703-
dc.identifier.issn1863-1711-
dc.identifier.urihttp://doi.org/10.1007/s11760-015-0768-2-
dc.identifier.urihttp://hdl.handle.net/11147/6125-
dc.description.abstractIn this paper, we present an omnidirectional vision-based method for object detection. We first adopt the conventional camera approach that uses sliding windows and histogram of oriented gradients (HOG) features. Then, we describe how the feature extraction step of the conventional approach should be modified for a theoretically correct and effective use in omnidirectional cameras. Main steps are modification of gradient magnitudes using Riemannian metric and conversion of gradient orientations to form an omnidirectional sliding window. In this way, we perform object detection directly on the omnidirectional images without converting them to panoramic or perspective images. Our experiments, with synthetic and real images, compare the proposed approach with regular (unmodified) HOG computation on both omnidirectional and panoramic images. Results show that the proposed approach should be preferred.en_US
dc.description.sponsorshipTUBITAK (113E107)en_US
dc.language.isoenen_US
dc.publisherSpringer Verlagen_US
dc.relationinfo:eu-repo/grantAgreement/TUBITAK/EEEAG/113E107en_US
dc.relation.ispartofSignal, Image and Video Processingen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCar detectionen_US
dc.subjectHuman detectionen_US
dc.subjectObject detectionen_US
dc.subjectVehicle detectionen_US
dc.subjectVideo camerasen_US
dc.titleA Direct Approach for Object Detection With Catadioptric Omnidirectional Camerasen_US
dc.typeArticleen_US
dc.authoridTR176747en_US
dc.institutionauthorÇınaroğlu, İbrahim-
dc.institutionauthorBaştanlar, Yalın-
dc.departmentİzmir Institute of Technology. Computer Engineeringen_US
dc.identifier.volume10en_US
dc.identifier.issue2en_US
dc.identifier.startpage413en_US
dc.identifier.endpage420en_US
dc.identifier.wosWOS:000369519300024en_US
dc.identifier.scopus2-s2.0-84954376259en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1007/s11760-015-0768-2-
dc.relation.doi10.1007/s11760-015-0768-2en_US
dc.coverage.doi10.1007/s11760-015-0768-2en_US
dc.identifier.wosqualityQ3-
dc.identifier.scopusqualityQ2-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.openairetypeArticle-
item.cerifentitytypePublications-
crisitem.author.dept03.04. Department of Computer Engineering-
Appears in Collections:Computer Engineering / Bilgisayar Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
6125.pdfMakale1.66 MBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

27
checked on Dec 20, 2024

WEB OF SCIENCETM
Citations

26
checked on Nov 23, 2024

Page view(s)

66,924
checked on Dec 16, 2024

Download(s)

666
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.