Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/6077
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ivanyshyn Yaman, Olha | - |
dc.contributor.author | Louër, Frederique Le | - |
dc.date.accessioned | 2017-08-11T07:18:51Z | - |
dc.date.available | 2017-08-11T07:18:51Z | - |
dc.date.issued | 2016-07-05 | - |
dc.identifier.citation | Ivanyshyn Yaman, O., and Louër, F. L. (2016). Material derivatives of boundary integral operators in electromagnetism and application to inverse scattering problems. Inverse Problems, 32(9). doi:10.1088/0266-5611/32/9/095003 | en_US |
dc.identifier.issn | 0266-5611 | - |
dc.identifier.uri | http://doi.org/10.1088/0266-5611/32/9/095003 | - |
dc.identifier.uri | http://hdl.handle.net/11147/6077 | - |
dc.description.abstract | This paper deals with the material derivative analysis of the boundary integral operators arising from the scattering theory of time-harmonic electromagnetic waves and its application to inverse problems. We present new results using the Piola transform of the boundary parametrisation to transport the integral operators on a fixed reference boundary. The transported integral operators are infinitely differentiable with respect to the parametrisations and simplified expressions of the material derivatives are obtained. Using these results, we extend a nonlinear integral equations approach developed for solving acoustic inverse obstacle scattering problems to electromagnetism. The inverse problem is formulated as a pair of nonlinear and ill-posed integral equations for the unknown boundary representing the boundary condition and the measurements, for which the iteratively regularized Gauss-Newton method can be applied. The algorithm has the interesting feature that it avoids the numerous numerical solution of boundary value problems at each iteration step. Numerical experiments are presented in the special case of star-shaped obstacles. | en_US |
dc.language.iso | en | en_US |
dc.publisher | IOP Publishing Ltd. | en_US |
dc.relation.ispartof | Inverse Problems | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Boundary integral equations | en_US |
dc.subject | Electromagnetism | en_US |
dc.subject | Material derivatives | en_US |
dc.subject | Obstacle scattering | en_US |
dc.subject | Inverse problems | en_US |
dc.title | Material derivatives of boundary integral operators in electromagnetism and application to inverse scattering problems | en_US |
dc.type | Article | en_US |
dc.authorid | TR253431 | en_US |
dc.institutionauthor | Ivanyshyn Yaman, Olha | - |
dc.department | İzmir Institute of Technology. Mathematics | en_US |
dc.identifier.volume | 32 | en_US |
dc.identifier.issue | 9 | en_US |
dc.identifier.wos | WOS:000383967900005 | en_US |
dc.identifier.scopus | 2-s2.0-84983784416 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.doi | 10.1088/0266-5611/32/9/095003 | - |
dc.relation.doi | 10.1088/0266-5611/32/9/095003 | en_US |
dc.coverage.doi | 10.1088/0266-5611/32/9/095003 | en_US |
dc.identifier.wosquality | Q1 | - |
dc.identifier.scopusquality | Q2 | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.grantfulltext | open | - |
item.cerifentitytype | Publications | - |
item.fulltext | With Fulltext | - |
item.openairetype | Article | - |
item.languageiso639-1 | en | - |
crisitem.author.dept | 04.02. Department of Mathematics | - |
Appears in Collections: | Mathematics / Matematik Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
deleted_67.pdf | 1.29 MB | Adobe PDF | View/Open |
CORE Recommender
SCOPUSTM
Citations
17
checked on Nov 22, 2024
WEB OF SCIENCETM
Citations
11
checked on Nov 16, 2024
Page view(s)
290
checked on Nov 18, 2024
Download(s)
330
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.