Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/6077
Full metadata record
DC FieldValueLanguage
dc.contributor.authorIvanyshyn Yaman, Olha-
dc.contributor.authorLouër, Frederique Le-
dc.date.accessioned2017-08-11T07:18:51Z-
dc.date.available2017-08-11T07:18:51Z-
dc.date.issued2016-07-05-
dc.identifier.citationIvanyshyn Yaman, O., and Louër, F. L. (2016). Material derivatives of boundary integral operators in electromagnetism and application to inverse scattering problems. Inverse Problems, 32(9). doi:10.1088/0266-5611/32/9/095003en_US
dc.identifier.issn0266-5611-
dc.identifier.urihttp://doi.org/10.1088/0266-5611/32/9/095003-
dc.identifier.urihttp://hdl.handle.net/11147/6077-
dc.description.abstractThis paper deals with the material derivative analysis of the boundary integral operators arising from the scattering theory of time-harmonic electromagnetic waves and its application to inverse problems. We present new results using the Piola transform of the boundary parametrisation to transport the integral operators on a fixed reference boundary. The transported integral operators are infinitely differentiable with respect to the parametrisations and simplified expressions of the material derivatives are obtained. Using these results, we extend a nonlinear integral equations approach developed for solving acoustic inverse obstacle scattering problems to electromagnetism. The inverse problem is formulated as a pair of nonlinear and ill-posed integral equations for the unknown boundary representing the boundary condition and the measurements, for which the iteratively regularized Gauss-Newton method can be applied. The algorithm has the interesting feature that it avoids the numerous numerical solution of boundary value problems at each iteration step. Numerical experiments are presented in the special case of star-shaped obstacles.en_US
dc.language.isoenen_US
dc.publisherIOP Publishing Ltd.en_US
dc.relation.ispartofInverse Problemsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBoundary integral equationsen_US
dc.subjectElectromagnetismen_US
dc.subjectMaterial derivativesen_US
dc.subjectObstacle scatteringen_US
dc.subjectInverse problemsen_US
dc.titleMaterial derivatives of boundary integral operators in electromagnetism and application to inverse scattering problemsen_US
dc.typeArticleen_US
dc.authoridTR253431en_US
dc.institutionauthorIvanyshyn Yaman, Olha-
dc.departmentİzmir Institute of Technology. Mathematicsen_US
dc.identifier.volume32en_US
dc.identifier.issue9en_US
dc.identifier.wosWOS:000383967900005en_US
dc.identifier.scopus2-s2.0-84983784416en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1088/0266-5611/32/9/095003-
dc.relation.doi10.1088/0266-5611/32/9/095003en_US
dc.coverage.doi10.1088/0266-5611/32/9/095003en_US
dc.identifier.wosqualityQ1-
dc.identifier.scopusqualityQ2-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextopen-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.openairetypeArticle-
item.languageiso639-1en-
crisitem.author.dept04.02. Department of Mathematics-
Appears in Collections:Mathematics / Matematik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
deleted_67.pdf1.29 MBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

17
checked on Nov 22, 2024

WEB OF SCIENCETM
Citations

11
checked on Nov 16, 2024

Page view(s)

290
checked on Nov 18, 2024

Download(s)

330
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.