
Material derivatives of boundary integral
operators in electromagnetism and
application to inverse scattering problems

Olha Ivanyshyn Yaman1 and Frédérique Le Louër2,3

1 Department of Mathematics, Izmir Institute of Technology, Urla, Izmir, 35430,
Turkey
2 Sorbonne Université, Université de technologie de Compiègne, LMAC EA2222
Laboratoire de Mathématiques Appliquées de Compiègne 60 203 Compiègne cedex,
France

E-mail: olhaivanyshyn@iyte.edu.tr and frederique.le-louer@utc.fr

Received 29 December 2015, revised 16 May 2016
Accepted for publication 26 May 2016
Published 5 July 2016

Abstract
This paper deals with the material derivative analysis of the boundary int-
egral operators arising from the scattering theory of time-harmonic electro-
magnetic waves and its application to inverse problems. We present new
results using the Piola transform of the boundary parametrisation to transport
the integral operators on a fixed reference boundary. The transported integral
operators are infinitely differentiable with respect to the parametrisations and
simplified expressions of the material derivatives are obtained. Using these
results, we extend a nonlinear integral equations approach developed for
solving acoustic inverse obstacle scattering problems to electromagnetism.
The inverse problem is formulated as a pair of nonlinear and ill-posed int-
egral equations for the unknown boundary representing the boundary con-
dition and the measurements, for which the iteratively regularized Gauss-
Newton method can be applied. The algorithm has the interesting feature that
it avoids the numerous numerical solution of boundary value problems at
each iteration step. Numerical experiments are presented in the special case
of star-shaped obstacles.
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1. Introduction

The mathematical modeling of physical applications such as non destructive testing, corrosion
detection, lens-antennas design or radar and bio-medical imaging leads to inverse boundary
value problems. This paper is devoted to extension of a novel inverse scattering method
initially developed for solving inverse acoustic scattering problems to electromagnetism. As
an example we consider the shape reconstruction problem of a three-dimensional bounded
perfectly conducting obstacle from noisy far-field measurements. The whole approach uses
geometric optimisation tools and can be adapted to many of the other above-mentioned
inverse problems with different kinds of boundary conditions.

We assume the perfect conductor (PC) can be represented by a bounded domain Ω in 3

with a smooth closed and orientable boundary Γ. Let Wc denote the exterior domain ⧹ W3

and n denote the outward unit normal vector to the boundary Γ. The wavenumber κ is a
positive real-valued constant. The propagation of electromagnetic waves are governed by the
system of Maxwell equations and the time-harmonic Maxwell system can be reduced to a
second order equation for the electric field only. In this case the forward problem is for-
mulated as follows: given an incident electric wave Einc which is assumed to solve the second
order Maxwell equation in the absence of any scatterer, find the electric scattered wave Es,
solution to the time-harmonic Maxwell equation

( )k- = WE E acurl curl 0 in , 1.1cs 2 s

and satisfying the boundary condition,

( ) ( )´ + = Gn E E b0 on . 1.1s inc

In addition, the scattered field Es, has to satisfy the Silver-Müller radiation condition:

∣ ∣ ( )
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This condition ensures uniqueness of the solution to the scattering problem and guarantees
that the scattered wave is outgoing. The PC problem can be reduced in several different ways
to a single uniquely solvable Brakhage-Werner type boundary integral equation for all
positive values of the exterior wavenumber κ. The well-posedness of the integral equation
and the uniqueness of the solution require the regularization of the single-layer boundary
integral operator. Various regularizing operators have been proposed in the scientific literature
depending on the applications: they are usually defined as integral operators over Γ [8, 9, 44]
or surface differential operators over Γ [13, 35].

The radiation condition implies that the scattered field Es has an asymptotic behavior of
the form
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uniformly in all directions ∣ ∣
=x x

x
. The far-field pattern ¥E is a tangential vector function

defined on the unit sphere 2 of 3 and is always analytic. The far-field pattern contains the
dependency informations of the solution on the geometry of the obstacle Ω.

Let us consider the scattering of m incident plane waves of the form ( ) ·= kE p ex d
k k

i xinc k

where Îd p,k k
2 and · =d p 0k k . We denote by Fk the boundary to far-field operator that
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maps the boundary Γ onto the far-field pattern ¥Ek of the solution to the forward problem
(1.1a)–(1.1c) for the incident wave Ek

inc.
The inverse PC problem is formulated as follows: given noisy far field measurements
¼d d

¥ ¥E E, , m1, , obtained from the scattering of the m incident plane waves characterized by the
couples of directions and polarizations ( ) = ¼d p,k k k m1, , , solve

( ) ( )G = = ¼d
¥EF k m, for 1, , . 1.2k k,

Here, the noise level is measured in the L2-norm, i.e. ( ) då - <d=
¥ ¥ E E

Lk
m

k k1 ,
2

2

1
2 , and the

error bound δ is assumed to be known. Recently it was proved that a perfect conducting
obstacle, which consists of finitely many solid polyhedra, is uniquely determined by the far-
field pattern corresponding to a single incident electromagnetic plane wave, see [36]. It is also
known that a ball is uniquely determined by the far field pattern for one incident plane wave,
see [31]. However, for perfect conductors of general shapes uniqueness is shown only for the
case when the far field pattern is known either for all incident directions and polarizations for
a fixed wave number, or for all wave numbers contained in some interval for one fixed
incident direction and polarization, see [8].

The inverse problem (1.2) is both nonlinear and severely ill-posed. In the scientific
literature, one can distinguish two different approaches relying on geometric optimization
tools to solve such an inverse problem. The first one consists in reformulating (1.2) as a
nonlinear equation posed on an open set of parametrized boundaries ( )G = Gqq with the same
genus. Then, we apply a regularized Newton-type method which consists in solving, at each
iteration step, the following linearized equation

[ ] ( ) ( ) x¶ = -d
¥q E q 1.3q k k k,

where ( ) Gq F: qk k . The computation of the iterates x requires the analysis and an explicit
form of the first Fréchet derivative of the parametrized form k of the boundary to far-field
operator Fk. The first Fréchet derivative is usually characterized as the far-field pattern of the
solution to a new exterior boundary value problem [11, 19, 30]. As a consequence, the inverse
scattering algorithm requires multiple numerical solution of boundary integral equations at
each iteration step to compute the new iterates by solving a nonlinear least square problem via
conjugate gradient method. This method was developed at first for solving inverse obstacle
scattering problems in acoustics, see e.g. [20, 22, 24, 29], and it has been recently applied to
electromagnetism and elastodynamics by Hohage and Le Louër [23, 34].

The second approach consists in reformulating (1.2) as a pair of nonlinear and ill-posed
integral equations for the unknown boundary representing the boundary condition on Γ and
the far-field pattern on 2. Then, we follow the previous procedure to recover simultaneously
the unknown parametrization of the boundary and the density (solution to the boundary
integral equation). Pioneering work in this area was conducted by Kress and Rundell in [32].
This novel method requires the differentiability analysis of the classical boundary integral
operators with respect to the parametrizations. First investigations were conducted by Potthast
[42] in the framework of acoustic scattering and Hölder continuously differentiable function
spaces. Later on the results were then generalized to Sobolev spaces by Costabel and Le
Louër [10]. To summarize the whole analysis, the integral equations are transported on a
reference boundary using a change of variable so that the domain and the range of the integral
operators do not depend on the parametrizations anymore and one can use standard differ-
ential calculus tools. The Fréchet derivatives of the transported integral operators are called
material derivatives and are obtained by differentiating the kernels. The Fréchet derivatives of
any order still have the same mapping properties so that one can use the same numerical
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scheme for implementation of these new integral operators. Using these results, Ivanyshyn
and Johansson applied this novel method for solving acoustic inverse obstacle scattering
problems [25–28]. The algorithm has the significant advantage of avoiding the numerous
numerical solution of boundary integral equations at each iteration step, that are replaced by
matrix-vector products.

The extension of this novel method for solving electromagnetic inverse obstacle scat-
tering problems is a challenging task. The feasibility of the whole procedure relies on the
knowledge of the explicit expressions of the material derivatives, that are suitable for
implementation. The differentiability analysis of the standard electromagnetic boundary int-
egral operators poses nontrivial theoretical issues since they are defined for tangential vector
densities lying in a Sobolev space of mixed regularity involving the surface divergence
operator. Potthast used in [43] projection operators on tangent planes to transport the
operators on a fixed reference boundary, but the proposed approach was adapted to the
magnetic field integral formulation only. Based on these results, numerical experiments can
be found in [8, section 7.3] illustrating the use of the nonlinear integral equations method in
inverse electromagnetic scattering. However, considering the integral operators being defined
on the above mentioned energy space of mix regularity, the domain and the range of the
transported operators still depend on the parametrizations. Costabel and Le Louër [11] get
around this difficulty by exploiting the Helmholtz decomposition of the energy space [12]. In
counterpart, one has to compute the material derivatives of a family of surface differential
operators. In this paper we present an alternative technique which greatly simplifies the
previous investigations using the Piola transform of the boundary parametrizations. Fur-
thermore, introducing a new family of regularizing operators in the integral formulations
independent of the parametrized boundaries, one gets an additional advantage of avoiding
their Frchet differentiation.

The Piola transform is known as a volume transformation which preserves the divergence
free condition for a family of parametrized subdomains in 3. This transform was already
used in the context of the shape sensitivity analysis of the solution to Navier–Stokes problems
[14, 41]. Here, we extend the mapping properties of the Piola transform to compact closed
boundaries and exploit the results to preserve the mixed regularity of the solution to boundary
integral equations.

The paper is organized as follows: in section 2, we describe the inverse scattering
algorithm based on nonlinear integral equations. We start by deriving the boundary integral
equation system equivalent to the inverse problem (1.2). Then, before considering the first
order linearization, we show how to transport the whole system to a fixed reference boundary
using the Piola transform. The iterative scheme is based on the iteratively regularized Gauss-
Newton (IRGN) method [3, 21, 22]. Section 3 contains the main results of this paper. We give
explicit expressions of the material derivatives and discuss their differentiability properties.
This work uses some elementary differential geometry tools in order to review the main
properties of the Piola transform in a very comprehensive way. The implementation of the
iterative algorithm is detailed in section 4 and numerical experiments are presented in
section 5 in the special case of star-shaped obstacles. Finally, we draw concluding remarks
and we discuss possible research lines in section 6.

2. The nonlinear integral equations method

We denote by ( )GHs the standard complex valued Hilbertian Sobolev space of order Îs
defined on Γ with the convention =H L0 2. Spaces of vector functions are denoted by
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boldface letters, thus ( )=H Hs s 3 and, spaces of tangent vectors fields are characterized by the
lower index t . For Îk , we denote by C ( )W,k 3 the space of k-times continuously dif-
ferentiable functions from W to 3. We denote by C ( )Wa ,k, 3 the class of functions in
C ( )W,k 3 whose all the partial derivatives of order k are α-Hölder continuous with

a<0 1. Finally, we define the spaces C ( )G,k 3 and C ( )Ga ,k, 3 as the set of the
restrictions to Γ of any function in C ( )W,k 3 and C ( )Wa ,k, 3 , respectively.

We use the following surface differential operators: the tangential gradient is denoted by

Ggrad , the surface divergence is denoted by Gdiv , the tangential vector curl is denoted by
Gcurl and the surface scalar curl is denoted by Gcurl . For their definitions we refer to [37,

pages 68-75] or [23, appendix A]. For any vector field C ( )Î Gq ,1 3 , we denote by [ ]GqD the
3 by 3 matrix function whose jth line is the tangential gradient of the jth component of q. We
introduce the Hilbert space

( ) { ( ) · ( )}G = Î G = Î G- -
G

-H j H j n j H; 0 and div ,div

1
2

1
2

1
2

endowed with the norm · · ·
( ) ( ) ( )

= +
G G

G
G

- - -
⎜ ⎟
⎛
⎝

⎞
⎠     div

H H H
2 2

1 2

div

1
2 1

2
1
2

. The dual space of

( )G-Hdiv

1
2 for the Lt

2 duality product is

( ) { ( ) · ( )}G = Î G = Î G- -
G

-H j H j n j H; 0 and curl ,curl

1
2

1
2

1
2

and the exterior product with the normal vector defines a bicontinuous isomorphism between
( )G-Hdiv

1
2 and ( )G-Hcurl

1
2 .

Let κ be a positive real-valued wavenumber and ( )
∣ ∣

k
p

F =
ke

z
z

,
4

i z
be the fundamental

solution of the Helmholtz equation kD + =u u 0.2 For any solution Es to the Maxwell
equation (1.1a) that satisfies the radiation condition (1.1c), it holds the Stratton-Chu repre-
sentation formula for Î Wx c [8, chapter 6]:

( ) { ( )( ( ) ( ))} ( )

{ ( )( ( ) ( ))} ( )

ò

ò

k

k
k

= F - ´

+ F - ´

G

G

E n E

n E

ds

ds

x curl x y y y y

curl curl x y y curl y y

,

1
, .

s s

s

x

x
2

Conversely, for any ( )Î G-j Hdiv

1
2 the potentials

S { ( · ) ( ))} ( )òk
k= F -k

G
j j dscurl curl y y y

1
,x

and

D { ( · ) ( )} ( )ò k= F -k
G

j j dscurl y y y,x

satisfy the Maxwell equation and the Silver-Müller radiation condition. Using these results,
the forward problem (1.1a)–(1.1c) can be reduced, in several different ways, to a single
uniquely solvable boundary integral equation. We will consider the following indirect
approach. It is based on the layer ansatz:

D S ( )h L= +k kE j ji , 2.1s
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whereL is a bounded operator from ( )G-Hdiv

1
2 to itself, self-adjoint and elliptic for the bilinear

form

( ) · ( ) ( )ò ´
G

j m j n m ds, 2.2

and η is a non vanishing real constant. By the jump relations, the field Es given by (2.1)
solves the Dirichlet boundary value problem (1.1a)–(1.1c) if the density j solves the
following integral equation

( ) ( ) ( )∣h L+ + = - ´ Gk k Gj n EM i CI 2 on . 2.3inc

Here the single layer potential kC and the double layer potential kM are defined by

( ) ( ) { ( ) ( )} ( )

( ) ( ) { ( ) ( )} ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

ò

ò

ò ò

k

k
k

k k
k

k

= ´ F -

= ´ F -

= ´ F - - F -

k

k

G

G

G
G

G
G

j n j

j n j

n j j

M ds

C ds

ds ds

x x curl x y y y

x x curl curl x y y y

x x y y y curl x y y y

2 , ,

1
2 ,

2 ,
1

2 , div .

x

x

The operator ( ) ( )G  Gk
- -H HM : div div

1
2

1
2 is compact (for smooth boundaries) and the operator

kC has a hypersingular kernel but it is bounded on ( )G-Hdiv

1
2 . The operator L is then chosen

such that ( )h L+ +k kM i CI is a Fredholm operator of index zero. One can find in the
scientific literature various definitions for the operator L. Kress first proposed in [8, theorem
6.21] a compact regularization L = ´j n jS0

2 where S0 is the single layer boundary integral
operator associated with the Laplace equation, thus ( )h L+ +k kM i CI is a Fredholm operator
of the second kind. One can also use the elliptic and invertible operator which is a variant of
the operator kC [44] defined on ( )G-Hdiv

1
2 by L = ´ + G Gj n j jS Scurl div .0 0 We obtain a

well-posed integral equation for Lipschitz domains. Another choice is to use an
approximation of the magnetic-to-electric field operator which is suitable for solving high-
frequency scattering [13]. We point out that the operator L usually depends on the boundary
Γ and can be chosen to obtain a well-posed integral equation on ( ) ( )ÇG G-H Ldiv t

2
1
2 .

The far-field pattern can be computed via the integral representation formula

D S ( )h L= +k k
¥ ¥ ¥E j ji 2.4

where the far-field operator Sk
¥ and Dk

¥ are defined for ( )Î G-j Hdiv

1
2 and Îx 2 by:
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Setting ( )h L= + +k kM i CI Iop and F D Sh L= +k k
¥ ¥ ¥i , the boundary to far-field

operator can be factorized as F( ) ( ( ))G = - ´¥ -
Gn EF I 2k op k

inc1
, and the inverse problem (1.2)

is equivalent to the following systems of nonlinear and still ill-posed integral equations for the
unknown boundary Γ

F

( )
( )∣


= - ´ G

=
= ¼

d

G
¥ ¥

⎪

⎪

⎧
⎨
⎩

j n E

j E
k m

I 2 , on

, on
, for 1, , . 2.5

op k k
inc

k k,
2

Instead of recovering only Γ, we seak the solutions ¼j j, , m1 to the boundary integral
equations and the boundary Γ simultaneously.
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To remove the ill-posedness of the system (2.5), we choose a fixed reference domainWref

with a closed and orientable boundary Gref of class C a1, at least, with a<0 1. Moreover,
we consider variations generated by transformations of the form ( ) qx x with a point x in
the space 3 and a smooth vector function q defined in a neighborhood of Gref . The function
( )-q I is assumed to be sufficiently small elements of the Banach space C ( )Ga ,1, 3 . In this
way, q is a diffeomorphism from Gref to { ( ) }G = Î Gq x x; ,q ref so that the surface Gq is still a
smooth boundary of a domain Wq with same genus as Wref . We have the continuous
embedding C( ) ↪ ( )G GaH ,s 1, 3 for any a> +s 2 (see [1, p 98] and [37, p 50]). We choose
>s 2 (i.e. a< < -s0 2) and we define the following open set of admissible variations

{ ( ) } Ì Î G G Gq H ; is diffeomorphic to .qad
s

ref ref

By nq we denote the outward unit normal vector to Gq and, in what follows, we will
distinguish the quantities related to the perfect conductor problem for the domain Wq through
the index q. When =q I, we remove the index q.

The operators Iop and F¥ are now considered as functions acting from ad to

L( )( ) ( )G G- -H H,q qdiv div

1
2

1
2 and L( )( ) ( )G-H L,qdiv t

2 2
1
2 , respectively, and we rewrite the system

(2.5) as follows:

F

( ) ( )

( )
( )∣


= - ´ G

=
= ¼

d

G

¥ ¥

⎪
⎪

⎧
⎨
⎩

q j n E

q j E
k m

I 2 , on

, on
, for 1, , . 2.6

q q q

q

op k k
inc

k k

,

, ,
2

q

The objective is to solve the nonlinear system (2.6) for unknowns q and jq by applying the
IRGN method for Hilbert spaces [22]. It requires the description of the differentiability
properties of the boundary integral operators. For this purpose, we have to remove the
dependence on q in the domain and in the range of the operators ( )qIop and F ( )¥ q . Indeed,

these operators are both defined on the q-dependent space ( )G-H qdiv

1
2 which poses nontrivial

problems for their differentiability analysis with respect to q. This issue was already
considered by Costabel and Le Louër in [11]. The strategy consists in introducing a
transformation q that maps the variable space ( )G-H qdiv

1
2 onto ( )G-Hdiv ref

1
2 and to rewrite the

system (2.6) as follows

F

( ) ( )

( )
( )

 

 
= G

=
= ¼

d

-

¥ - ¥

⎪

⎪

⎧
⎨
⎩

q j f q

q j E
k m

I , on

, on
, for 1, , , 2.7

q q

q

op k k

k k

1
ref

1
,

2

where ( )= Î G-j j Hq qk k, div ref
1
2 and ( ) ( ) ( )= - ´ Î G

G
-f q n E H2 q qk k

inc
div ref

q

1
2 . We are finally

led to study the differentiability properties of the following operators:

L( )( ) ( )

( )

^ 

 

 G G- -

-

H H

q q

I : ,

I ,q q

op ad

op

div ref div ref

1

1
2

1
2

and

F L

F

( )( ) ( )

( )





 G¥ -

¥ -

 H L

q q

: ,

.q

ad div ref t
2 2

1

1
2

To construct the transformation q, Costabel and Le Louër [10, 11] exploited the Hodge

structure [12] of ( ) ( )( ) ( ) ( )G = G Å G-
G GH H Hgrad curlq q qdiv q q

1
2

3
2

1
2 for smooth and simply
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connected closed boundaries. On one hand, we are lead to the differentiability analysis of
some boundary integral operators lying in the classical Sobolev spaces. On the other hand, we
have to study the differentiability properties with respect to q of the following surface
differential operators : Ggrad

q
, Gcurl q, Gdiv q, Gcurl q, DGq and its inverse. The resulting

expression of the first Fréchet derivative of Îop is rather complicated.
For numerical purposes, it is more convenient to use instead the Piola transform of q

defined as follows

( ) ( )
[ ] ( ◦ ) ( )

 G  G

=

- -

G
-

H H

j j q j qJ

:

D , 2.8

q q

q q q

div div ref

1

1
2

1
2

ref

where we have set [ ] [ ] ◦=G
-

G
-q q qD D1 1

qref and Jq is the determinant of the Jacobian matrix
of the change of variable ( ) qx x . The main properties of q are given in section 3. To
describe the iterative scheme for solving (2.7), we use the following notations

( ) ( )^ ^=q j q jI I ,op op and F F( ) ( )=
¥ ¥ q j q j, . The method involves the full linearization of

the system of integral equations (2.7) with respect to both the boundary parametrization and
the density. After linearization we obtain for = ¼k m1, ,

F F F

( ) ( ) [ ] ( ) [ ]

( ) ( ) [ ] ( )

^ ^ ^


x x

x

+ + ¶ = + ¶ G

+ + ¶ = d
¥ ¥ ¥ ¥  

q j q m q j f q f q

q j q m q j E

I , I , I , , on

, , , , on . 2.9

q q

q

op k op k op k k k

k k k k

ref

,
2

We rearrange the system (2.9), for = ¼k m1, , , in the form

( )x =⎜ ⎟⎛
⎝

⎞
⎠

m
A B a, 2.10k

k
k

where

F F F

( ·) [ ] [ ]

( ·) [ ]

( ) ( )

( )
( )

^ ^ ^
=

¶ - ¶

¶
=

-

-d
¥ ¥ ¥ ¥

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟  

q q j f q

q q j

f q q j

E q j
A B b

I , I ,

, ,
,

I ,

,
. 2.10

q q

q
k

op op k k

k

k
k op k

k k,

One can prove that solving (1.3) is equivalent to solving the system of integral
equations (2.10a)–(2.10b). The proof is detailed in [39] using the magnetic field integral
equation. Here we avoid the existence of real-valued eigenfrequencies using Braquage-
Werner type boundary integral equations.

Theorem 2.1. Let Îq ad and set [ ( ·)] [ ]^= -j q f qI ,k op k
1 . If x solves (1.3), then x and

[ ( )] ( [ ] [ ] )^ ^ x x= - ¶ - ¶-m q q j f qI I ,q qk op op k k
1 solve the system (2.10a)–(2.10b). Conversely, if

x and mk solve (2.10a)–(2.10b), then x solves (1.3).

We deduce that the injectivity and the denseness of the operator Ak is related to the
injectivity and the denseness of the operator [ ]¶ qq k . Contrary to the acoustic case [28], it is
still an open question whether or not the null-space of the operator [ ]¶ qq k is reduced to the
set C≔ { ( ) ( ◦ ) · } x xÎ G =a -q n, ; 0q

1,
ref

3 1 when Ek
inc is an incident plane wave.

Counterexamples can be found in [19] when Ek
inc is a Maxwell eigenfunction. As a con-

sequence we cannot prove yet that the restriction to starlike domains is sufficient to obtain
injectivity.

To start the procedure we make an initial guess for the unknown boundary Γ para-
metrized by = dq q0 0. We compute the intitial density = dj jk k

0
,

0 by solving (2.3) on G
dq
0. Then,

at each iteration step, knowing the current approximation ( )d dj q,k
N N
, we compute the next
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iterates ¼d d
+ +j j, ,N

m
N

1,
1

,
1 and d

+q N 1 by solving the nonlinear least square problem

≔

( ) ( ) ( )

( )
å

åa b

-

-
-

+ - + -

d

d

d

d
d

d
d

+

+

+
¼ =

=

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

⎡

⎣
⎢⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦⎥



   

j

j

q

j j

q q

q q j j

A Bargmin

, 2.11

j j q

N

m
N

N
k

m

k
N k k

N

N k
N

N N
k

m

k k

1,
1

,
1

1

, , , 1
,

,
,

2

0 2

1

0 2

m1

via the conjugate gradient method. The solutions of boundary value problems when using the
classical Newton iteration (1.3) are replaced by matrix-vector products. Here the
regularization parameters are chosen of the form a g a= -

N
N

0 and b g b= -
N

N
0, with

g > 1, which provides logarithmic convergence rates of the IRGN method in Hilbert spaces
[21, 22, theorem 4.9] when the stopping rule is given by the Morozov’s discrepancy principle

( ) ( ) å td-d
=

¥
⎛
⎝⎜

⎞
⎠⎟ q E 2.12

L
k

m

k
N

k
1

2
2

1
2

where t > 1 is known from the beginning. The corrections = -d d d
+m j jk

N
k
N

k
N

, ,
1

, and

x = -d d d
+q qN N N1 are the unique solution to the regularized linear equation [3]

[ ] [ ]

( )

( )

( )

( ) * *

x

b
a

b

b

a

+ = +

-

-

-

d d

d

d

d

d d

d

d

d d

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

 
m

m

j j

j j

q q

A A A B
I 0

0 I
,L

H

N

N

N N

N

m
N

N

N N

N
N

N m
N

m

N
N

1,

,

1, 1
0

,
0

0

m

s

t
2

where [ ]*dAN is the L2 adjoint operator of dAN , T( )= ¼d d dB BB , ,N N
m
N

1, , and

F F

F F

( ·) [ ] [ ]

( ·) [ ]

( ·) [ ] [ ]

( ·) [ ]

^ ^

^ ^

=

¼ ¼ ¶ - ¶

¶

¶ - ¶

¼ ¼ ¶

d

d d d d

d d d

d d d d

d d d

¥ ¥

¥ ¥

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟

 

  
  
 

 

 

q q j f q

q q j

q q j f q

q q j

A

I , 0 0 I ,

, 0 ,

0
0

I , I ,

0 0 , ,

.

q q

q

q q

q

N

op
N

op
N N N

N N N

op
N

op
N

m
N

m
N

N N
m
N

1, 1

1,

,

,

3. Material derivative analysis of the integral operators

The Piola transform has been already considered by Hohage and Le Louër in [23], when
G =ref

2 for solving the dielectric scattering problem. In particular, using a projection
method on the orthonormal system of tangential vector spherical harmonics, the systems of
second-kind boundary integral equations were implemented. Therefore, this section uses
notations and contains some results stated in [23, section 3] which are extended to a general
orientable surface Gref below. In addition, the mapping properties of the adjoint operator of the
Piola transform are stated.

Inverse Problems 32 (2016) 095003 O Ivanyshyn Yaman and F L Louër

9



We recall elementary results on differential geometry following [37, pp 68–71]. Given
Î Gx ref , we assume that the tangent plane Tx to Gref at x is generated by the tangential

contravariant vectors ( )e x1 and ( )e x2 and the cotangent plane *Tx to Gref at x is generated by
the tangential covariant vectors ( )e x1 and ( )e x2 such that ´ = e e 11 2 and

( ) · ( ) d=e ex xi
j

i
j for i, j = 1, 2. Here di

j represents the Kronecker symbol. In this case, we
have = ´n e e1 2.

Let Îq ad. The surface Jacobian matrix [ ( )]G q xD ref
maps the tangent plane Tx to Gref at

the point x onto the tangent plane ( )Tq x to Gq at the point ( )q x . The latter is generated by the
contravariant vectors

( ) [ ( )] ( ) ( ) [ ( )] ( )= =G Gt q q e t q q ex x x x x x; D and ; D .1 1 2 2ref ref

Thus, we can write [ ] ( ) ( )= Ä + ÄG q t q e t q eD 1
1

2
2

ref . The functions Jq and ◦n qq can be
computed via the formulas ∣ ∣= ´t tJq 1 2 and ◦ = ´n qq

t t
Jq

1 2 . The parametrization G  Gq : ref

being a diffeomorphism, we set [ ( )] [ ]◦ ( )=G
-

G
-q q qx xD D1 1

qref . The transposed matrix
T[ ( )]G

-q xD 1
ref maps the cotangent plane *Tx to Gref at the point x onto the cotangent plane

( )*Tq x to Gq at the point ( )q x . The latter is generated by the covariant vectors

T

T

( ) [ ( )] ( )
( ) ( ( ))

( )

( ) [ ( )] ( )
( ( ( )) ( )

( )

= =
´

= =
´

G
-

G
-

t q q e
t q n q

t q q e
n q t q

J

J

x x x
x x

x

x x x
x x

x

; D
;

,

; D
;

.

q

q

q

q

1 1 1 2

2 1 2 1

ref

ref

Hence, we can write T[ ( )] ( ) ( )= Ä + ÄG
-q t q e t q exD 1 1

1
2

2ref . The adjoint operator of q

for the Lt
2 duality product is defined by

T

( ) ( )

( [ ] ) ◦ ( )

* G  G

=

- -

G
- -

H H

j j q j q

:

D . 3.1

q q

q

curl ref curl

1 1

1
2

1
2

ref

For any tangential vector functions j to Gref and jq to Gq we have the following useful
identities

( ) ( ) ( ) ( ) ( )* *   ´ = ´ ´ = ´- -n j n j n j n jand . 3.2q q q q q q q q
1

From this and the definition of the surface differential operators using an atlas given in [37, pp
72-75] or [23, appendix A], it is straightforward to deduce the following transformation
formulas for the surface differential operators. Let C ( )Î Gu ,q

1 and C ( )Î Gv ,q
1 3 , then we

have [23, section 3]:

( ) ( ◦ ) ( ) ( ◦ )

( )◦ ( ) ( ) ◦ ( ) ( )

*

*

 

 

= =

= =

-
G G G G

G G G G
-

q q

v q v v q v

u u u u

J J

grad grad curl curl, ,

div div , curl curl . 3.3

q q

q q q q

q q

q q

ref ref

ref ref

Furthermore, we have [4, proposition 4.7]

( ) ( )
( )

= ´ = ´

= =
G G G G

G G G G

n v v nu u

u u

curl grad

grad curl

, curl div ,

curl 0, div 0. 3.4
ref ref ref ref

ref ref ref ref

By density arguments, these formulas can be extended to Sobolev spaces.
From the formulas (3.3) and (3.4) we deduce the following lemma, which is of great

importance for the shape sensitivity analysis in electromagnetism. Parts of the proof are stated
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in [23] using the Hodge decomposition of the ( )-
G

Hdiv
2

1
2 and can be extended to more general

surfaces using the Hodge decompositions [4, equations (29) and (33)] and [5, theorem 3.4].

Lemma 3.1. Let Îq ad . The Piola transform q of q, and its adjoint operator * q, defined
by (2.8) and (3.1) respectively, are bicontinuous invertible operators. Moreover, we have

( )
( )

[ ( ( )] [ ( ( )]

[ ( ( )] [ ( ( )]*





G = G

G = G

G
-

G
-

G
-

G
-

H H

H H

Ker div Ker div ,

Ker curl Ker curl .

q q

q q

t t ref

t t ref

q

q

1
2

ref

1
2

1
2

ref

1
2

The remainder of the section is devoted to the material derivative analysis of the
operators Îop and F

¥ that can be written as follows

F D S

( ) ( ( ) ) ( ( ) )( ( ) )

( ) ( )( ( ) )
( )

^      

   

h

h

L

L

= + +

= +

k k

k k

G
- - -

¥ ¥ - ¥ - -

-



q q q q

q q

M i C

i

I I ,

.

H
q q q q q q

q q q q

op
1 1 1

1 1 1
div

1
2

ref

Let ( )Î G-j Hq qdiv

1
2 , =j jq q and ( ) ( ( ) ) L L= - q qq q

1 . Then we have

( ) · ( ) ( ( ) ) · ( )

( ( ) ) · ( )

( ( ) ) · ( )

*

 

 

ò ò

ò

ò

L L

L

L

´ = ´

= ´

= ´

G G

-

G

-

G







q j n j q j n j

q j n j

q j n j

ds ds

ds

ds.

q q q q q q q q

q q q q q

1

q q

ref

ref

We deduce that the operator ( )L q is an elliptic operator on ( )G-H qdiv

1
2 for the bilinear form (2.2)

with G = Gq if and only if ( )L q is an elliptic operator on ( )G-Hdiv ref
1
2 for the bilinear form (2.2)

with G = Gref . Moreover, the operators ( )L q and ( )L q have the same mapping properties. It
follows that we can choose the regularizing operator ( )L q such that ( )L q does not depend on
q and we write ( )L L= q .

Proposition 3.2. The mappings C( ) ( ) Î  Î Gat q t q: ,k ad k
0,

ref
3 , for k = 1,2 are

Fréchet differentiable at all Îq ad and the first derivatives at q in the direction
C ( )x Î Ga1,

ref are given by

( [ ] )( )) [ ( )] ( )x x¶ = =Gt q e kx x xD , for 1, 2.q k kref

Proof. Let Îq ad and C ( )x Î Ga ,1,
ref

3 such that x+ Îq ad. By definition of the
tangent vectors tk for k = 1, 2 we have:

( ) ( ) [ ( )] [ ] [ ]x x x+ - = + - =G G Gt q t q q e q e eD D D .k k k k kref ref ref

The function tk is linear and continuous at q, therefore its first Fréchet derivative at q is tk and
the higher order Fréchet derivatives vanish. +
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Let Îq ad and ( )Î G-j Hdiv ref
1
2 . We set ( ) ( ) =k k

- q j q jM M, q q
1 and we have

( )( ) ( )[ ( )] ( ( ))

{ ( ( ) ( ))[ ( )] ( )} ( )( )

ò
k

=

´ F -

k G
-

G

G

 q j q n q

q q q j

M J

ds

x x x x

curl x y y y y

, D

2 , D .

q

q

q

x

1
ref

ref

ref

From (3.2) and (3.3), this can be rewritten

T( )( ) ( ) [ ( )] { ( ( ) ( ))[ ( )] ( )} ( )

( ) { ( )( ( ) · ( )) ( )( ( ) · ( ))} ( )

( ) { ( )( ( ) · ( ))

( )( ( ) · ( ))} ( )

( )

 





ò

ò

ò

k= ´ F -

= +

+

+

k
G

G G

G

G

 q j n q q q q j

e q j e q j e

e q j e

q j e

M ds

ds

ds

x x x curl x y y y y

x x y y y x y y y y

x x y y y

x y y y y

, D 2 , D

; , ; ,

; ,

; , ,

q x

1
1
1

1 2
1

2

2
1
2

1

2
2

2

ref
ref ref

ref

ref

where

( ) ( )( ( ) ( )) · ( ( ) ( ))
( ) ( )( ( ) ( )) · ( ( ) ( ))
( ) ( )( ( ) ( )) · ( ( ) ( ))
( ) ( )( ( ) ( )) · ( ( ) ( ))









k

k

k

k

=- F - ´

=- F - ´

= F - ´

= F - ´

q q q t q t q

q q q t q t q

q q q t q t q

q q q t q t q

x y grad x y y x

x y grad x y y x

x y grad x y y x

x y grad x y y x

; , 2 , ; ; ,

; , 2 , ; ; ,

; , 2 , ; ; ,

; , 2 , ; ; ,

z

z

z

z

1
1

1 2

2
1

2 2

1
2

1 1

2
2

2 1

with

( ) ( )
∣ ∣ ∣ ∣

k
k

kF =
F

-
⎛
⎝⎜

⎞
⎠⎟igrad z

z
z z

z,
, 1

.z

Remark 3.3. Boundary integral operators resulting from classical scattering theory are
divided into three classes of operators depending of the behaviour on their pseudo-
homogeneous kernel when -  x y 0 that is ( ) ( )= - b- k Ox y x y, 2 [37, section 4.3].
For smooth boundaries in3, (i) if b > 0 then the kernel is said to be weakly singular and the
operator is bounded and compact from ( )G-H

1
2 to ( )G-H

1
2 . For example, the kernelsi

j, for
i, j = 1, 2, are weakly singular with b a= . Indeed, for any ( ) Î G ´ Gx y, ref ref , the α-Hölder
continuity of q allows us to write

( ) ( ) [ ( )]( ) ( )
( ) ( ) ( )

- = - + -
= + -

a

a
G

+ 
 

q q q

t q t q

O

O

y x x y x x y

y x x y

D and

; ; .k k

1
ref

We use ( ) ( ) ( ) ( ( ))´ =t q t q n qJx x x x; ; q q1 2 , ( ( )) · [ ( )]( )- =Gn q qx x y xD 0q ref
and

( ) ´t q x;k ( ) =t q x; 0k ;
(ii) if b = 0 and the kernel is odd, then the kernel is said to be strongly singular and the

operator is bounded from ( )G-H
1
2 to itself;

(iii) if b < 0 then the kernel is said to be hypersingular and the operator is unbounded
on ( )G-H

1
2 . In this case we usually rewrite the kernel involving surface differential

operators.
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Theorem 3.4. The mapping L( )( )  G- HM :k ad div ref
1
2 is Fréchet differentiable at all

Îq ad and the first derivatives at q in the direction C ( )x Î Ga1,
ref is a bounded linear

integral operator in L( )( )G-Hdiv ref
1
2 defined for ( )Î G-j Hdiv ref

1
2 by

( [ ] )( ) ( ) {( [ ] )( )( ( ) · ( ))

( [ ] )( )( ( ) · ( ))} ( )

( ) {( [ ] )( )( ( ) · ( ))

( [ ] )( )( ( ) · ( ))} ( )









ò

ò

x x

x

x

x

¶ = ¶

+ ¶

+ ¶

+ ¶

k
G

G

 q j e q j e

q j e

e q j e

q j e

M

ds

ds

x x x y y y

x y y y y

x x y y y

x y y y y

, ,

,

,

, ,

q q

q

q

q

1
1
1

1

2
1

2

2
1
2

1

2
2

2

ref

ref

where

( [ ] )( ) {[( )( ( ) ( ))]( ( ) ( ))}
· ( ( ) ( )) ( )( ( ) ( ))
· (( [ ] )( ) ( ) ( )

( [ ] )( ))
( [ ] )( ) {[( )( ( ) ( ))]( ( ) ( ))}

· ( ( ) ( )) ( )( ( ) ( ))
· (( [ ] )( ) ( ) ( )

( [ ] )( ))
( [ ] )( ) {[( )( ( ) ( ))]( ( ) ( ))}

· ( ( ) ( )) ( )( ( ) ( ))
· (( [ ] )( ) ( ) ( )

( [ ] )( ))
( [ ] )( ) {[( )( ( ) ( ))]( ( ) ( ))}

· ( ( ) ( )) ( )( ( ) ( ))
· (( [ ] )( ) ( ) ( )

( [ ] )( ))









x x x

x
x

x x x

x
x

x x x

x
x

x x x

x
x

k
k

k
k

k
k

k
k

¶ =- F - -
´ - F -

¶ ´ +
´ ¶

¶ =- F - -
´ - F -

¶ ´ +
´ ¶

¶ = F - -
´ + F -

¶ ´ +
´ ¶

¶ = F - -
´ + F -

¶ ´ +
´ ¶

q q q

t q t q q q
t q t q t q

t q

q q q

t q t q q q
t q t q t q

t q

q q q

t q t q q q
t q t q t q

t q

q q q

t q t q q q
t q t q t q

t q

x y Hess x y x y

y x grad x y
y x y

x

x y Hess x y x y

y x grad x y
y x y

x

x y Hess x y x y

y x grad x y
y x y

x

x y Hess x y x y

y x grad x y
y x y

x

, 2 ,

; ; 2 ,
; ;

,

, 2 ,

; ; 2 ,
; ;

,

, 2 ,

; ; 2 ,
; ;

,

, 2 ,

; ; 2 ,
; ;

,

q

q

q

q

q

q

q

q

q

q

q

q

z

z

z

z

z

z

z

z

1
1

1 2

1 2 1

2

2
1

2 2

2 2 2

2

1
2

1 1

1 1 1

1

2
2

2 2

2 1 2

1

with

( ) ( )
∣ ∣ ∣ ∣

( )
∣ ∣ ∣ ∣ ∣ ∣

( ) ( )

k
k

k
k

k
k

k k

F =
F

- +
F

- - + Ä

= +

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟i

i
Hess z

z
z z

z
z z z

z z

H z H z

,
, 1

I
, 3 3

, , .

z
2

2
2

1 2

Proof. The complete proof should be realized in two parts. First we prove that the Fréchet
differentiability of the boundary integral operators is obtained by proving the Fréchet
differentiability of the kernel. Then we prove that the first Fréchet derivative of the kernel in
any direction x defines a bounded operator from ( )G-Hdiv ref

1
2 to itself. The first step and the
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computation of the derivatives have been widely detailed in the papers [10, 11, 42, 43].
Therefore we discuss the second point only.

• Let us prove that the kernels [ ] x¶ qq i
j , for i, j = 1, 2, are weakly singular with

b a= . The terms involving ( )kH z,2 are treated in the same way as in remark 3.3 (i) since it
involves the scalar products ( ( ) ( )) · ( ( ) ( ))- ´q q t q t qx y y x; ;i j . The matrix H1 behaves as

- z 3 when  z 0. It remains to analyze the following sum when Î Gx y, ref and
-  x y 0:

( ( ) ( )) · ( ( ) ( ))
( ( ) ( )) · (( [ ] )( ) ( ) ( ) ( [ ] )( ))

x x
x x

- ´
+ - ¶ ´ + ´ ¶

t q t q

q q t q t q t q t q

x y y x

x y y x y x

; ;

; ; .q q

i j

i j i j

We use

( ) ( ) [ ( )]( ) ( )
( ) ( ) [ ( )]( ) ( )x x x

- = - + -

- = - + -

a

a
G

+

G
+

 
 

q q q O

O

x y x y x x y

x y x y x x y

D ,

D ,

1

1
ref

ref

[ ] [ ][ ] [ ]x x=G G G
-

Gq qD D D D1
ref ref ref ref and T( ( ) )( )´ + ´ = - ´a b a b a bP P Trace P I P if

P is 3 by 3 matrix and a b, are two vectors in 3. We obtain

T

([ ( )]( )) · ( ( ) ( ))
([ ( )][ ( )] )([ ( )]( )) · ( ( ) ( ))

([ ( )]( )) · ( ([ ( )][ ( )] )( ( ) ( )))
( )
([ ( )][ ( )] )([ ( )]( )) · ( ( ) ( ))

( )
( ) ( )

x

x

x

x

- ´

+ - ´

- - ´

+ -

= - ´

+ -

= -

a

a

a

G

G G
-

G

G G G
-

+

G G
-

G

+

+

 

 
 

t q t q

q q t q t q

q q t q t q

q q t q t q

O

O

O

x y x y x

x x x y x y x

x y x x x y x

x y

x x x y x y x

x y

x y

D ; ;

Trace D D D ; ;

D D D ; ;

Trace D D D ; ;

since the sum of the first and third terms vanishes

using remark 3.3 i .

i j

i j

i j

i j

1

1

1

1

1

1

ref

ref ref ref

ref ref ref

ref ref ref

We point out that we obtained the usual material derivative results: the term involving
([ ][ ] )xG G

-qTrace D D 1
ref ref gives the material derivative of Jq, that is ( ( ◦ )) ◦xG

-q qJ divq
1

q , and
the one involving T([ ( )][ ( )] )xG G

-qx xD D 1
ref ref gives the material derivative of ◦n qq , that

is ([ ◦ ] ) ◦x- G
-q n qgrad .q

1
q

• Let us prove that [ · ] ( )x¶ Î GkG
- qM Hdiv ,qref

1
2 . We use the possibility to interchange

the differentiation with respect to q and the differentiation with respect to x because the
operator Gdiv ref does not depend on q:

[ · ] ( )[ · ]x x¶ = ¶k kG G q qM Mdiv , div , .q qref ref

Using (3.3) and (3.4) we find that the kernel of ( )kG  q jMdiv ,ref is

( ( ) ( )) ( ) ( ( )) · ( )
( ) ( ( )) · ( ( ) ( )) ( )( )

k k

k

- F -

- F -

-

G

q q n q j

n q q q j

J

J

x y x x y

x x grad x y y

,

, div .

q q q

q q
q x

2 1

ref

The kernel of the first term is weakly singular with b = 1. We have ( )Î GG
-j Hdiv refref

1
2

independent of q and the kernel of the second term is weakly singular with b a= . By
differentiation with respect to q we obtain the same results (we refer to [42]). +
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For any ( )Î G-j Hdiv ref
1
2 , we set ( ) ( ) =k k

- q j q jC C, q q
1 and we have

( )( ) ( )[ ( )] ( ( ))

{ ( ( ) ( ))[ ( )] ( )} ( )

( (·) ( )) ( ) ( ) ( )

ò

ò

k

k

k
k

=

´ F -

- F -

k G
-

G

G

G
G

G
⎛
⎝⎜

⎞
⎠⎟

 q j q n q

q q q j

q q j

C J

ds

ds

x x x x

x y y y y

curl y y y x

, D

2 , D

1
2 , div

qq
1

ref
ref

ref

ref
ref

ref

From (3.2) and (3.3), this can be rewritten

T( )( ) ( ) [ ( )]{ ( ( ) ( ))[ ( )] ( )} ( )

( (·) ( )) ( ) ( ) ( )

( ) { ( )( ( ) · ( )) ( )( ( ) · ( ))} ( )

( ) { ( )( ( ) · ( )) ( )( ( ) · ( ))} ( )

( (·) ( )) ( ) ( ) ( )

 

 

ò

ò

ò

ò

ò

k k

k
k

k

k

k
k

= ´ F -

- F -

= +

+ +

- F -

k
G

G G

G
G

G

G

G

G
G

G

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

 q j n q q q q j

q q j

e q j e q j e

e q j e q j e

q q j

C ds

ds

ds

ds

ds

x x x x y y y y

curl y y y x

x x y y y x y y y y

x x y y y x y y y y

curl y y y x

, D 2 , D

1
2 , div

; , ; ,

; , ; ,

1
2 , div ,

1
1
1

1 2
1

2

2
1
2

1 2
2

2

ref
ref ref

ref
ref

ref

ref

ref

ref
ref

ref

where

( ) ( ( ) ( ))( ( ) · ( ))
( ) ( ( ) ( ))( ( ) · ( ))
( ) ( ( ) ( ))( ( ) · ( ))
( ) ( ( ) ( ))( ( ) · ( ))









k

k

k

k

=- F -

=- F -

= F -

= F -

q q q t q t q

q q q t q t q

q q q t q t q

q q q t q t q

x y x y y x

x y x y y x

x y x y y x

x y x y y x

; , 2 , ; ; ,

; , 2 , ; ; ,

; , 2 , ; ; ,

; , 2 , ; ; .

1
1

1 2

2
1

2 2

1
2

1 1

2
2

2 1

Theorem 3.5. The mapping L( )( )  G- HC :k ad div ref
1
2 is Fréchet differentiable at all

Îq ad and the first derivatives at q in the direction C ( )x Î Ga1,
ref is a bounded linear

integral operator in L( )( )G-Hdiv ref
1
2 defined for ( )Î G-j Hdiv ref

1
2 by

( [ ] )( ) ( ) {( [ ] )( )( ( ) · ( ))

( [ ] )( )( ( ) · ( ))} ( )

( ) {( [ ] )( )( ( ) · ( ))

( [ ] )( )( ( ) · ( ))} ( )

{( )( (·) ( ))

· ( (·) ( )) ( )} ( ))( )









ò

ò

ò

x x

x

x

x

x x

k

k

k
k

¶ = ¶

+ ¶

+ ¶

+ ¶

- F -

-

k
G

G

G
G

G

⎛
⎝⎜

 q j e q j e

q j e

e q j e

q j e

q q

j

C

ds

ds

ds

x x x y y y

x y y y y

x x y y y

x y y y y

curl grad y

y y y x

, ,

,

,

,

1
2 ,

div ,

q q

q

q

q

z

1
1
1

1

2
1

2

2
1
2

1

2
2

2

ref

ref

ref
ref

ref
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where

( [ ] )( ) ( )( ( ) ( )) · ( ( ) ( ))( ( ) · ( ))
( ( ) ( ))(( [ ] )( )

· ( ) ( ) · ( [ ] )( ))
( [ ] )( ) ( )( ( ) ( )) · ( ( ) ( ))( ( ) · ( ))

( ( ) ( ))(( [ ] )( ) · ( ) ( )
· ( [ ] )( ))

( [ ] )( ) ( )( ( ) ( )) · ( ( ) ( ))( ( ) · ( ))
( ( ) ( ))(( [ ] )( )

· ( ) ( ) · ( [ ] )( ))
( [ ] )( ) ( )( ( ) ( )) · ( ( ) ( ))( ( ) · ( ))

( ( ) ( ))(( [ ] )( )
· ( ) ( ) · ( [ ] )( ))









x x x
x
x

x x x
x

x

x x x
x

x

x x x
x

x

k
k

k
k

k
k

k
k

¶ =- F - -
- F - ¶

+ ¶

¶ =- F - -
- F - ¶ +
¶

¶ = F - -
+ F - ¶

+ ¶

¶ = F - -
+ F - ¶

+ ¶

q q q t q t q

q q t q

t q t q t q

q q q t q t q

q q t q t q t q

t q

q q q t q t q

q q t q

t q t q t q

q q q t q t q

q q t q

t q t q t q

x y grad x y x y y x

x y y

x y x

x y grad x y x y y x

x y y x y

x

x y grad x y x y y x

x y y

x y x

x y grad x y x y y x

x y y

x y x

, 2 , ; ;

2 ,

; ; ,

, 2 , ; ;

2 , ; ;

,

, 2 , ; ;

2 ,

; ; ,

, 2 , ; ;

2 ,

; ; .

q

q

q

q

q

q

q

q

q

q

q

q

z

z

z

z

1
1

1 2

1

2 1 2

2
1

2 2

2 2 2

2

1
2

1 1

1

1 1 1

2
2

2 2

2

1 2 1

Proof. To obtain the expression of the material derivatives we use again the possibility to
interchange the differentiation with respect to q with the surface differential operators and the
integral sign on Gref . Using the Taylor-Young expansions of q and x given in remark 3.3 it is
easy to prove that the kernels of the derivatives [ ] x¶ qq k

ℓ , for =ℓ k, 1, 2, are weakly singular
with b = 1. Employing the chain rule, we obtain the boundedness of the first derivative from

( )G-Hdiv ref
1
2 to ( )G-Ht ref

1
2 . Applying the operator Gdiv ref to [ ]x¶ k q jC ,q , the third term vanishes

so that the operator ( [ · ] ) ( )[ · ]x x¶ = ¶k kG G q qC Cdiv , div ,q qref ref is bounded from ( )G-Hdiv ref
1
2 to

( )G-H ref
1
2 . +

We set S S( ) ( )=k k
¥ ¥ - q j q j, q

1 and D D( ) ( )=k k
¥ ¥ - q j q j, q

1 and we have

S ( )( ) {( ( ) · ( )) ( )

( ( ) · ( )) ( )} ( ))

· ( )ò
k
p

= ´

+ ´

k
k¥

G

-
⎛
⎝⎜  



q j j e t q

j e t q

e

ds

x x y y y

y y y y x

,
4

;

; ,

qi x y
1 1

2 2

ref

and

D {
}

( )

( )

( )( ) ( ) · ( ) ( )

( ) · ( ) ( ) ( )

· ( )ò
k
p

=

+

k
k¥

G

-  q j j e t q

j e t q

i
e

ds

x x y y y

y y y y

,
4

;

; .

qi x y
1 1

2 2

ref

Theorem 3.6. The mappings S D L( ( ) ( ))  Gk k
¥ ¥  L L, : ,ad t

2
ref t

2 2 are Fréchet
differentiable at all Îq ad and the first derivatives at q in the direction

C ( )x Î Ga ,1,
ref

3 are bounded linear integral operators in L( ( ) ( ))GL L,t
2

ref t
2 2 defined

for ( )Î Gj Lt
2

ref by
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S

D

( [ ] )( ) {( ( ) · ( ))( [ ] )( )

( ( ) · ( ))( [ ] )( )} ( ))

( [ ] )( ) {( ( ) · ( ))( [ ] )( )

( ( ) · ( ))( [ ] )( )} ( )









ò

ò

x x

x

x x

x

k
p

k
p

¶ = ´ ¶

+ ¶ ´

¶ = ´ ¶

+ ¶

k

k

¥

G

¥

¥

¥

G

¥

¥

⎛
⎝⎜   

 

  





q j j e q

j e q

q j j e q

j e q

ds

i

ds

x x y y x y

y y x y y x

x x y y x y

y y x y y

,
4

,

, ,

,
4

,

, ,

q q

q

q q

q

1 1

2 2

1 1

2 2

ref

ref

where

( [ ] )( ) { ( · ( )) ( ) ( [ ] )( )}
( [ ] )( ) { ( · ( )) ( ) ( [ ] )( )}

· ( )

· ( )





x x x

x x x

k

k

¶ = - + ¶

¶ = - + ¶

k

k

¥ -

¥ -

 
 





q t q t q

q t q t q

e i

e i

x y x y y y

x y x y y y

, ; ,

, ; .

q
q

q

q
q

q

i

i

x y

x y

1 1 1

2 2 2

Proof. The proof is established in [11]. The use of the Piola transform instead of the Hodge
decomposition does not pose additional issues. +

Hence with the aid of theorems 3.3–3.5 we found Fréchet derivatives of the following
operators defined on ( ) ( )ÇG G-H Ldiv ref t

2
ref

1
2 : ( ·) ( ·) ( ·)^ h L= + +k k  q q qM i CI , I , ,op and

F ( ·)¥ q, D ( ·)= k
¥ q, S ( ·)h L+ k

¥ qi , . They are given by [ ]^¶ q jI ,q op [ ]=¶ k q jM ,q

[ ]h L+ ¶ k q ji C ,q and F D S[ ] [ ] [ ]h L¶ = ¶ + ¶k k
¥ ¥ ¥ q j q j q ji, , ,q q q , correspondingly.

We have, = ¼k m1, , , ( ) ( )= - ´
G

f q n E2 q qk k
inc
, q

. By the definition of the incident

plane wave and (2.8) we obtain

( )( ) [ ( )] ( ( ) )( )·= - ´ k
G

-f q q n pJ ex x x2 D .q q
q d

k k
i x1 k

ref

Since [ ] ( ) ( )= Ä + ÄG
-q e t q e t qD 1

1
1

2
2

ref the function fk can be rewritten as following

( )( ) ( ( )( · ( )) ( )( · ( )))( )·= -kf q e p t q e p t qex x x x x2 ; ; .q d
k

i
k k

x
1 2 2 1k

Using the chain rule we obtain the following result.

Proposition 3.7. The mapping ( ) ( )Î  Î G-f q f q H:k ad div ref
1
2 , is Fréchet differentiable

at all Îq ad and the first derivatives at q in the direction C ( )x Î Ga ,1,
ref

3 is given by

( [ ] )( ) ( )( ) ( ) ·
( ( )( · ( [ ] )( )) ( )( · ( [ ] )( )))( )·

x x

x x

k¶ =

+ ¶ - ¶k

f q f q d

e p t q e p t q

i

e

x x x

x x x x2 .

q

q d
q q

k k k

i
k k

x
1 2 2 1k

4. Numerical implementation

To solve the parametrized system of boundary integral equation with smooth and weakly
singular kernels we employ a high order spectral algorithm, which was recently introduced by
Le Louër [23, 33]. The idea of the method originates from Atkinson’s work [2], where he
suggested a Galerkin method for the Laplace equation. Later on, Wienert [45] has developed a
Nyström method for problems which has been further developed by Ganesh, Graham, Sloan
[15, 18] into fully discrete Galerkin type method. By combining the spectral method [15] and
the hybrid spectral method [16, 17] Le Louër [33] introduced a high order spectral algorithm
for the Maxwell’s equations, which we employ also in this work.

We assume G =ref
2 and consider special parametrizations

( ) ≔ ( ) ( )  = Î  q r r rx x x xwith , , 4.12
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with a function ( )  ¥r : 0,2 uniquely determined by Γ. The set of admissible
parametrizations is defined as ≔ { ( ) }  Î >r H r, ; 0 ,s

star
2 ( )   Ì adstar . The

parameterized form of the operator Ak in (2.10b) is an operator

( ) ( ) ( ) ( )    ´  ´- -H H LHA : ,k star
s

, div
2 2

div
2

t
2 2

1
2

1
2 defined by ◦ ( )=A A diag I, .k star k,

The implementation of the operators kM , kC is already discussed in [23, 33]. Here, we
focus on the operator ¶ kMq . For brevity we use the notation ( )= q q x:x . To split off the
singularities in the kernels of integral operators we introduce the functions:

( ) ( ∣ ∣) ( )
( ∣ ∣)

∣ ∣ 
p

k
p k

= - =
=

=

k k
k -

-

⎧
⎨⎪
⎩⎪

   
 

 








q q q qx y x y
x y

x y
; ,

1

2
cos , ; ,

1

2

, ,

, .

q q

q q
x y1 2

sin x y

x y

The operator [ ]¶ k q jM ,q s can then be rewritten as

s

r ( )

( [ ] )( ) ( ) ( ) ( )
∣ ∣

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )









ò

ò

å å

å å

x x

x

¶ = -
-

+ -

k k

k

= ¢=
¢

¢

= ¢=
¢

¢

  




 

 


  

   4.2

q j e
q

q j

e q j

M
R

ds

i ds

x x
x y

x y
x y y y

x x y y y

, 1
; ,

; , ,

1 ; , ,

q s s

s

ı

ı ı

ı
ı

ı ı

ı

ı ı

ı
ı

ı ı

1

2

1

2

,

1

2

1

2

,

2

2

Here ( ) ∣ ∣ ∣ ∣= - -    q q qR x y x y; , x y , ( ) ( ( ) · ( ))=¢
¢  j j ey y ys s

ı
ı ,

s

r

( ) ( )
∣ ∣

( ) ( ) ( )

( )
∣ ∣

( ) ( )

( ) ( ) ( )
∣ ∣

( ) ( )

( ) ( )
∣ ∣

( )




  


 


 

 

 


x x

x

x x

x

k k

k

k
k

k

=
-

+ -

-
-

+

=
- +

-
-

+
-

-

k

k
k k

k
k

k

k k
k
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¢
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¢
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⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

    

  

    

  

    

  

    

  

 

 

 

 

q
q

q q
q q q

q

q q
q q

q
q q

q q
q q

q q

q q
q

x y
x y

x y x y x y

x y
x y x y

x y
x y x y

x y x y

x y x y
x y

; , ,
3 ; ,

3 ; , ; , ; , ,

; ,
; , ; , , ,

; , ,
3 ; , 3 ; ,

; , ; , ,

; , ; ,
; , , ,

ı
ı

ı
ı

ı
ı

ı
ı

ı
ı

ı
ı

x y

x y

x y

x y

,
1

2 2
2

1

1
2 2

,
1 2

2
2

2

1 2
2

( ) ( ) · ( ( ) ( ))
( )· ( )

∣ ∣
 x = - ´

x x
¢

- -

- ¢ -   
 



 


q q q t q t qx y y x; , , ; ;

q q

q qı
ı

ı ıx y 3
x y x y

x y
2

with

( ) ( ) · ( ( ) ( )) ( )·
· ( ( ) ( ) ( ) ( ))

 x x x

x x

= - ´ + -

´ + ´
¢ ¢ -

¢ - ¢ -

 
 

 
 

   q t q t q q q

t t q t q t

x y y x

y x y x

; , , ; ;

; ; ; ; .
ı
ı

ı ı

ı ı ı ı

x y x y3

3 3

The operator [ ]¶ k q jC ,q s can then be rewritten as

s

r

s

r ( )

( [ ] )( ) ( ) ( ) ( )
∣ ∣

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )
∣ ∣

( ) ( ) ( )

( ) ( ) ( )













  

  

ò

ò

ò

ò
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x

x

x

k

k

k

k
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-
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-
-

-
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k

k

k

= ¢=
¢

¢

= ¢=
¢

¢

    
 

   

    

 
 

   

    4.3

q j e
q

q j

e q j

q
q j

q j

C
R

ds

i ds

R
ds

i
ds

x x
x y

x y
x y y y

x x y y y

curl
x y

x y
x y y y

curl x y y y

, 1
; ,

; , ,

1 ; , ,

1 ; ,
; , , div

; , , div ,

q s s

s

s

s

ı

ı ı

ı
ı
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ı
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s ( ) ( ) ( ) · ( )( )
∣ ∣

 x x xk= - + - -k
k

-

k
⎜ ⎟⎛
⎝

⎞
⎠   

 


 
 

q q q qx y x y; , , ; , ,q

q q

x y
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Next, we introduce a change of coordinate system, e.g. for Îx 2 we consider an orthogonal
transformation Tx, such that h= T xx , where T( )h = 0, 0, 1 . Introducing an induced linear
transformation ( ) ( ) -  u u Ty y:x x

1 and its bivariate analogue we rewrite the boundary integral
operators (4.2), (4.3) in the form where the singularities are moved to only one point, h. Using the
spherical coordinates for the unit sphere parameterization, i.e. ( )q f= ¢ ¢ z z , the singularity at the
point h is canceled out by the surface element. Moreover, similarly to [15], it can be shown that
the corresponding mappings, e.g. s( ) ( ˆ ( )) ( )  h x hq f q f¢ ¢ ¢ ¢ k ¢   q qR z z, ; , , ; , ,ı

ı
x x , , are

smooth.
The numerical integration formula over the unit sphere of continuous function is per-

formed via the Gauss trapezoidal product rule, [40]. For the integrals with weakly singular
kernels, we apply the numerical quadrature which is based on the fact that the scalar spherical
harmonics are eigenfunctions of the single layer potential on the sphere, [8]. The hypersin-
gular part of the electromagnetic double layer boundary integral operator is computed by
integration by parts and employing surface derivatives of the vector spherical harmonics, [33].

The Gauss trapezoidal product rule is exact for the scalar spherical harmonics of order
less than or equal to +n2 1. It induces the discrete inner product on the space n of all scalar
spherical harmonics of degree less than or equal to n using which we can define the projection
on n. The inner product of two of tangential vector spherical harmonics of degree less than or
equal to n belongs to  +n2 1. This induces the discrete inner product on the space n of finite
dimension ( )+ -n2 1 22 generated by the orthonormal tangential vector spherical harmo-
nics of degree less than or equal to n. Hence, we can define the corresponding projection on

( ) Ì -Hn div
2

1
2 . Having splitted off the singularities in the kernels, we approximate all

operators by replacing the continuous part of the corresponding integrand by its projection
onto the space  ¢n , ¢ = +n n2 1, the density function is sought in the n space and the shape
function is sought in the space or real-valued scalar spherical harmonics,

( )  Ì Ì H ,N
s

star
2

star
, where N nstar . The semi-discrete version of the first equation in

(2.9) is projected onto the space n and by taking the scalar product with tangential vector
spherical harmonics the resulting integral equation is discretized into (( ) )´ + -n2 1 12

complex-valued algebraic equations for (( ) )´ + -n2 1 12 complex-valued and ( )+N 1star
2

real-valued unknown coefficients. The semi-discrete version of the second equation in (2.9) is
evaluated at ( )´ +N2 1msr

2 measurement points. Finally, we obtain a fully discrete system
of [( ) ( ) ]+ - + +n N4 1 1 1msr

2 2 real-valued equations for (( ) ) ( )+ - + +n N4 1 1 12
star

2

real-valued unknown coefficients. The procedure extends in an obvious way to the case of
>m 1 incident plane waves.
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5. Numerical experiments

The synthethic data were obtained by solving the boundary integral equation based on
Stratton-Chu representation formula with =n 20syn . In the numerical algorithm we choose
the regularizing operator L as following [33],

( ) ( )     L = -D + -D- - curl graddiv curl1 22 2 2 2 2 2

and the parameter h = 1 in (2.1). We present the reconstruction results for one concave
obstacle and one convex obstacle: bean(2.0) and rounded hexahedron (p=10), with
parametric representation given in [15] and [38], correspondingly. The diameter of the
obstacles is roughly 2. Since we consider scattering for frequencies in the resonance region,
we choose the wavenumber κ such that the wavelengthl p k= 2 is of a comparable size to
the diameter of the obstacle Ω, e.g. we study two cases k p= and k p= 2. The obstacle is
illuminated by only one incident plane wave with the polarization T( )=p 1, 0, 0 and the
direction T( )=d 0, 0, 1 . As an initial guess for all reconstruction we consider a unit ball
centered at the origin. The parameters for the problem discretization were chosen as
follows: = = =n N N15, 15, 7msrstar . The regularization parameters in (2.11) are selected

as ( )b = 0.01N
N2

3
, ( )a = 0.5N

N2

3
and s = 2.1—index of the Sobolev space used for the

parametrization of the unknown shape. The iterations are terminated according to the
Morozov’s discrepency principle (2.12) with t = 1.1. Figure 1 exhibits behaviours of the
residual at each iteration step for two different object bean(’b’) and hexahedron(’h’), two
wave numbers and noise levels of 1% and 5%. From the graph it can be concluded that the
best reconstructions are obtained for the noise level of 1% and the case when the diameter
of the obstacle is equal to the wavelength, i.e. k p= . The worst reconstructions are gained
when we increase the noise level and change the wavelenth at the same time. In figure 2 we
show the corresponding results. As indicated in [15], calculation of scattered field for the
ellipsoidal obstacles require fewer degrees of freedom compared to the bean, therefore it is
natural that the reconstruction of the convex rounded rectangle is more accurate than the
reconstruction of the concave object. The reconstruction improves and the number of
iterations decreases with increase in the number of incident plane waves. In figure 3 the
reconstructions of the obstacle illuminated by 6 incident plane waves from top, bottom,
front, back, left and right are shown.

6. Conclusion and perspectives

In this paper we established the material derivative analysis of the boundary integral operators
arising in the potential theory of time-harmonic electromagnetic waves. Among all the pro-
posed approaches [8, 11, 39, 43], the use of the Piola transform of the boundary para-
metrisations greatly simplifies both the theoretical and numerical investigations. These new
results allowed us to propose a new inverse scattering algorithm, based on previous inves-
tigations in acoustics [26, 27], for solving shape reconstruction problems in
electromagnetism.

A promising advantage of the inverse scattering algorithm presented in this paper is to
avoid numerous numerical solutions at each iteration step of exterior boundary value pro-
blems that are very time consuming. The method presented in section 2 gives an alternative
approach to the adjoint state method usually used to compute the Fréchet derivatives for
solving any inverse obstacle scattering problems via geometric optimization methods. This
new algorithm coupled with topological optimization tools will allow us to investigate and
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develop in forthcoming papers new fast computational methods for solving more challenging
inverse obstacle scattering problems. That are the location and the shape reconstruction of
multiple scatterers with various kind of boundary conditions [6, 7].

Figure 1. Numerical convergence.
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Figure 2. Reconstructions of the obstacles for one incident plane wave.
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