Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/5992
Title: | Adsorption of No in Clinoptilolite-Rich Zeolitic Mineral by Concentration Pulse Chromatography Method | Authors: | Narin, Güler Ülkü, Semra |
Keywords: | Adsorption Chromatography Diffusion Natural zeolites Nitric oxide |
Publisher: | Elsevier Ltd. | Source: | Narin, G., and Ülkü, S. (2016). Adsorption of NO in clinoptilolite-rich zeolitic mineral by concentration pulse chromatography method. Microporous and Mesoporous Materials, 234, 120-129. doi:10.1016/j.micromeso.2016.07.007 | Abstract: | The equilibrium and kinetic parameters for NO adsorption in a clinoptilolite-rich natural zeolitic material from Turkey were determined using the concentration pulse chromatography method. Under the experimental conditions (carrier gas velocities and adsorption temperatures) the micropore diffusion resistance was found to be the mass transfer controlling step. Matching the first moment of the response peaks to the mathematical model the Henry's Law constants and heat of adsorption at zero loading were determined. The axial dispersion, external film, macropore and micropore diffusion coefficients, and activation energy for diffusion of NO in the micropores were calculated from the analysis of the second moments of the response peaks. For successive NO pulses without regeneration between the pulses, the retention times of the response peaks decreased and peak areas increased with the injection number indicating irreversible adsorption. The reversibly adsorbed NO could be desorbed by purging with an inert gas at the adsorption pressure and temperature. Temperature programmed desorption profile obtained by heating the NO saturated adsorbent to 400 °C under inert flow revealed presence of multiple irreversibly adsorbed species in NZ with different thermal stabilities. Desorption of these species was not achieved during the heating up to 400 °C which makes the natural zeolitic materıal suitable for NO storage rather than for cyclic adsorptive separation processes. | URI: | http://doi.org/10.1016/j.micromeso.2016.07.007 http://hdl.handle.net/11147/5992 |
ISSN: | 1387-1811 |
Appears in Collections: | Chemical Engineering / Kimya Mühendisliği Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Show full item record
CORE Recommender
SCOPUSTM
Citations
2
checked on Dec 20, 2024
WEB OF SCIENCETM
Citations
3
checked on Nov 23, 2024
Page view(s)
1,376
checked on Dec 23, 2024
Download(s)
1,294
checked on Dec 23, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.