Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/5937
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBüyükaşık, Engin-
dc.contributor.authorDurğun, Yılmaz-
dc.date.accessioned2017-07-17T07:36:23Z-
dc.date.available2017-07-17T07:36:23Z-
dc.date.issued2016-01-
dc.identifier.citationBüyükaşık, E., and Durğun, Y. (2016). Neat-flat modules. Communications in Algebra, 44(1), 416-428. doi:10.1080/00927872.2014.982816en_US
dc.identifier.issn0092-7872-
dc.identifier.urihttp://doi.org/10.1080/00927872.2014.982816-
dc.identifier.urihttp://hdl.handle.net/11147/5937-
dc.description.abstractLet R be a ring. A right R-module M is said to be neat-flat if the kernel of any epimorphism Y → M is neat in Y, i.e., the induced map Hom(S, Y) → Hom(S, M) is surjective for any simple right R-module S. Neat-flat right R-modules are projective if and only if R is a right (Formula presented.) -CS ring. Every cyclic neat-flat right R-module is projective if and only if R is right CS and right C-ring. It is shown that, over a commutative Noetherian ring R, (1) every neat-flat module is flat if and only if every absolutely coneat module is injective if and only if R ≅ A × B, wherein A is a QF-ring and B is hereditary, and (2) every neat-flat module is absolutely coneat if and only if every absolutely coneat module is neat-flat if and only if R ≅ A × B, wherein A is a QF-ring and B is Artinian with J 2(B) = 0.en_US
dc.description.sponsorshipScientific and Technical Research Council of Turkeyen_US
dc.language.isoenen_US
dc.publisherTaylor and Francis Ltd.en_US
dc.relation.ispartofCommunications in Algebraen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subject(Co)neat submoduleen_US
dc.subjectClosed submoduleen_US
dc.subjectExtending moduleen_US
dc.subjectNeat-flat moduleen_US
dc.subjectQF-ringen_US
dc.titleNeat-flat modulesen_US
dc.typeArticleen_US
dc.authoridTR130906en_US
dc.institutionauthorBüyükaşık, Engin-
dc.departmentİzmir Institute of Technology. Mathematicsen_US
dc.identifier.volume44en_US
dc.identifier.issue1en_US
dc.identifier.startpage416en_US
dc.identifier.endpage428en_US
dc.identifier.wosWOS:000363286700030en_US
dc.identifier.scopus2-s2.0-84944809671en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1080/00927872.2014.982816-
dc.relation.doi10.1080/00927872.2014.982816en_US
dc.coverage.doi10.1080/00927872.2014.982816en_US
dc.identifier.wosqualityQ3-
dc.identifier.scopusqualityQ2-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept04.02. Department of Mathematics-
Appears in Collections:Mathematics / Matematik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
5937.pdfMakale206.57 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

11
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

11
checked on Oct 26, 2024

Page view(s)

908
checked on Nov 18, 2024

Download(s)

918
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.