Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/5911
Title: Observation of the rare B0s??+?- decay from the combined analysis of CMS and LHCb data
Authors: CMS Collaboration
Karapınar, Güler
Keywords: Large Hadron Collider (LHC)
Compact Muon Solenoid
Proton
Electromagnetic field
Elementary particles
Publisher: Nature Publishing Group
Source: Khachatryan, V., Sirunyan, A.M., Tumasyan, A., Adam, W., Bergauer, T., Dragicevic, M.,...CMS Collaboration (2015). Observation of the rare B0s→μ+μ- decay from the combined analysis of CMS and LHCb data. Nature, 522(7554), 68-72. doi:10.1038/nature14474
Abstract: The standard model of particle physics describes the fundamental particles and their interactions via the strong, electromagnetic and weak forces. It provides precise predictions for measurable quantities that can be tested experimentally. The probabilities, or branching fractions, of the strangeB meson (B0 s ) andtheB0meson decaying into two oppositely charged muons (μ+ and μ-) are especially interesting because of their sensitivity to theories that extend the standard model. The standard model predicts that the B0s→μ+μ- and B0s→μ+μ- decays are very rare, with about four of the former occurring for every billion B0 s mesons produced, and one of the latter occurring for every ten billion B0 mesons1. A difference in the observed branching fractions with respect to the predictions of the standard model would provide a direction in which the standard model should be extended. Before the Large Hadron Collider (LHC) at CERN2 started operating, no evidence for either decay mode had been found. Upper limits on the branching fractions were an order of magnitude above the standard model predictions. The CMS (CompactMuonSolenoid) andLHCb(LargeHadronCollider beauty) collaborations have performed a joint analysis of the data from proton'proton collisions that they collected in 2011 at a centre-ofmass energy of seven teraelectronvolts and in 2012 at eight teraelectronvolts. Here we report the first observation of the B0s→μ+μ- decay, with a statistical significance exceeding six standard deviations, and the best measurement so far of its branching fraction. Furthermore, we obtained evidence for the B0s→μ+μ- decay with a statistical significance of three standard deviations. Both measurements are statistically compatible with standard model predictions and allow stringent constraints to be placed on theories beyond the standardmodel. The LHCexperimentswill resume taking data in 2015, recording proton'proton collisions at a centre-of-mass energy of 13 teraelectronvolts, which will approximately double the production rates of B0s and B0 mesons and lead to further improvements in the precision of these crucial tests of the standard model. © 2015 Macmillan Publishers Limited. All rights reserved.
URI: http://doi.org/10.1038/nature14474
http://hdl.handle.net/11147/5911
ISSN: 0028-0836
1476-4687
Appears in Collections:Mathematics / Matematik
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Rectorate / Rektörlük
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File Description SizeFormat 
5911.pdfMakale3.63 MBAdobe PDFThumbnail
View/Open
Show full item record



CORE Recommender

SCOPUSTM   
Citations

371
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

127
checked on Nov 9, 2024

Page view(s)

264
checked on Nov 18, 2024

Download(s)

250
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.