Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/5825
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVo, Truong Quoc-
dc.contributor.authorBarışık, Murat-
dc.contributor.authorKim, BoHung-
dc.date.accessioned2017-06-30T12:56:07Z
dc.date.available2017-06-30T12:56:07Z
dc.date.issued2015-11-11
dc.identifier.citationVo, T.Q., Barışık, M., and Kim, B. (2015). Near-surface viscosity effects on capillary rise of water in nanotubes. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 92(5). doi:10.1103/PhysRevE.92.053009en_US
dc.identifier.issn1539-3755
dc.identifier.issn1539-3755-
dc.identifier.issn1550-2376-
dc.identifier.urihttps://doi.org/10.1103/PhysRevE.92.053009
dc.identifier.urihttp://hdl.handle.net/11147/5825
dc.description.abstractIn this paper, we present an approach for predicting nanoscale capillary imbibitions using the Lucas-Washburn (LW) theory. Molecular dynamics (MD) simulations were employed to investigate the effects of surface forces on the viscosity of liquid water. This provides an update to the modified LW equation that considered only a nanoscale slip length. An initial water nanodroplet study was performed to properly elucidate the wetting behavior of copper and gold surfaces. Intermolecular interaction strengths between water and corresponding solid surfaces were determined by matching the contact angle values obtained by experimental measurements. The migration of liquid water into copper and gold capillaries was measured by MD simulations and was found to differ from the modified LW equation. We found that the liquid layering in the vicinity of the solid surface induces a higher density and viscosity, leading to a slower MD uptake of fluid into the capillaries than was theoretically predicted. The near-surface viscosity for the nanoscale-confined water was defined and calculated for the thin film of water that was sheared between the two solid surfaces, as the ratio of water shear stress to the applied shear rate. Considering the effects of both the interface viscosity and slip length of the fluid, we successfully predicted the MD-measured fluid rise in the nanotubes.en_US
dc.language.isoenen_US
dc.publisherAmerican Physical Societyen_US
dc.relation.ispartofPhysical Review E - Statistical, Nonlinear, and Soft Matter Physicsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCapillarityen_US
dc.subjectCopperen_US
dc.subjectFluidsen_US
dc.subjectGolden_US
dc.subjectNanotubesen_US
dc.subjectWetting behavioren_US
dc.titleNear-surface viscosity effects on capillary rise of water in nanotubesen_US
dc.typeArticleen_US
dc.institutionauthorBarışık, Murat-
dc.departmentİzmir Institute of Technology. Mechanical Engineeringen_US
dc.identifier.volume92en_US
dc.identifier.issue5en_US
dc.identifier.wosWOS:000364413300003en_US
dc.identifier.scopus2-s2.0-84947295113en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1103/PhysRevE.92.053009-
dc.identifier.pmid26651781en_US
dc.relation.doi10.1103/PhysRevE.92.053009en_US
dc.coverage.doi10.1103/PhysRevE.92.053009en_US
dc.identifier.wosqualityN/A-
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityttpTop10%en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextopen-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.openairetypeArticle-
item.languageiso639-1en-
crisitem.author.dept03.10. Department of Mechanical Engineering-
Appears in Collections:Mechanical Engineering / Makina Mühendisliği
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
5825.pdfMakale1.68 MBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

72
checked on Nov 23, 2024

WEB OF SCIENCETM
Citations

71
checked on Nov 23, 2024

Page view(s)

684
checked on Nov 18, 2024

Download(s)

416
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.