Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/5757
Title: | Comparative study of a building energy performance software (KEP-IYTE-ESS) and ANN-based building heat load estimation | Authors: | Turhan, Cihan Kazanasmaz, Zehra Tuğçe Erlalelitepe Uygun, İlknur Ekmen, Kenan Evren Gökçen Akkurt, Gülden |
Keywords: | Artificial neural networks Existing buildings Heat load Prediction Residential buildings Simulation software |
Publisher: | Elsevier Ltd. | Source: | Turhan, C., Kazanasmaz, T., Erlalelitepe Uygun, İ., Ekmen, K.E., and Gökçen Akkurt, G. (2014). Comparative study of a building energy performance software (KEP-IYTE-ESS) and ANN-based building heat load estimation. Energy and Buildings, 85, 115-125. doi:10.1016/j.enbuild.2014.09.026 | Abstract: | The several parameters affect the heat load of a building; geometry, construction, layout, climate and the users. These parameters are complex and interrelated. Comprehensive models are needed to understand relationships among the parameters that can handle non-linearities. The aim of this study is to predict heat load of existing buildings benefiting from width/length ratio, wall overall heat transfer coefficient, area/volume ratio, total external surface area, total window area/total external surface area ratio by using artificial neural networks and compare the results with a building energy simulation tool called KEP-IYTE-ESS developed by Izmir Institute of Technology. A back propagation neural network algorithm has been preferred and both simulation tools were applied to 148 residential buildings selected from 3 municipalities of Izmir-Turkey. Under the given conditions, a good coherence was observed between artificial neural network and building energy simulation tool results with a mean absolute percentage error of 5.06% and successful prediction rate of 0.977. The advantages of ANN model over the energy simulation software are observed as the simplicity, the speed of calculation and learning from the limited data sets. | URI: | https://doi.org/10.1016/j.enbuild.2014.09.026 http://hdl.handle.net/11147/5757 |
ISSN: | 0378-7788 0378-7788 |
Appears in Collections: | Architecture / Mimarlık Mechanical Engineering / Makina Mühendisliği Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Show full item record
CORE Recommender
SCOPUSTM
Citations
97
checked on Nov 15, 2024
WEB OF SCIENCETM
Citations
88
checked on Nov 16, 2024
Page view(s)
4,746
checked on Nov 18, 2024
Download(s)
1,020
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.