Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/5677
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGezici, Gizem-
dc.contributor.authorYanıkoğlu, Berrin-
dc.contributor.authorTapucu, Dilek-
dc.contributor.authorSaygın, Yücel-
dc.date.accessioned2017-06-02T07:00:59Z-
dc.date.available2017-06-02T07:00:59Z-
dc.date.issued2015-
dc.identifier.citationGezici, G., Yanıkoğlu, B., Tapucu, D., and Saygın, Y. (2015). Sentiment analysis using domain-adaptation and sentence-based analysis. Studies in Computational Intelligence, 602, 45-64. doi:10.1007/978-3-319-18458-6_3en_US
dc.identifier.issn1860-949X-
dc.identifier.urihttp://doi.org/10.1007/978-3-319-18458-6_3-
dc.identifier.urihttp://hdl.handle.net/11147/5677-
dc.description.abstractSentiment analysis aims to automatically estimate the sentiment in a given text as positive, objective or negative, possibly together with the strength of the sentiment. Polarity lexicons that indicate how positive or negative each term is, are often used as the basis of many sentiment analysis approaches. Domain-specific polarity lexicons are expensive and time-consuming to build; hence, researchers often use a general purpose or domain-independent lexicon as the basis of their analysis. In this work, we address two sub-tasks in sentiment analysis. We apply a simple method to adapt a general purpose polarity lexicon to a specific domain [1]. Subsequently, we propose and evaluate new features to be used in a word polarity based approach to sentiment classification. In particular, we analyze sentences as the first step for estimating the overall review polarity. We consider different aspects of sentences, such as length, purity, irrealis content, subjectivity, and position within the opinionated text. This analysis is then used to find sentences that may convey better information about the overall review polarity.We use a subset of hotel reviews from the TripAdvisor database [2] to evaluate the effect of sentence-level features on sentiment classification. Then, we measure the performance of our sentiment analysis engine using the domain-adapted lexicon on a large subset of theTripAdvisor database.en_US
dc.description.sponsorshipEuropean Commission, FP7, under UBIPOL (Ubiquitous Participation Platform for Policy Making) Projecten_US
dc.language.isoenen_US
dc.publisherSpringer Verlagen_US
dc.relation.ispartofStudies in Computational Intelligenceen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectSentiment analysisen_US
dc.subjectPolarity lexiconsen_US
dc.subjectsentiment classificationen_US
dc.subjectTripAdvisoren_US
dc.titleSentiment analysis using domain-adaptation and sentence-based analysisen_US
dc.typeArticleen_US
dc.institutionauthorTapucu, Dilek-
dc.departmentİzmir Institute of Technology. Computer Engineeringen_US
dc.identifier.volume602en_US
dc.identifier.startpage45en_US
dc.identifier.endpage64en_US
dc.identifier.wosWOS:000383955400004en_US
dc.identifier.scopus2-s2.0-84930965832en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1007/978-3-319-18458-6_3-
dc.relation.doi10.1007/978-3-319-18458-6_3en_US
dc.coverage.doi10.1007/978-3-319-18458-6_3en_US
dc.identifier.wosqualityN/A-
dc.identifier.scopusqualityQ3-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextopen-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.openairetypeArticle-
item.languageiso639-1en-
crisitem.author.dept03.04. Department of Computer Engineering-
Appears in Collections:Computer Engineering / Bilgisayar Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
5677.pdfMakale182.77 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

5
checked on Nov 22, 2024

WEB OF SCIENCETM
Citations

5
checked on Oct 26, 2024

Page view(s)

168
checked on Nov 18, 2024

Download(s)

448
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.