Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/5615
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKaraçalı, Bilge-
dc.date.accessioned2017-05-25T13:42:19Z-
dc.date.available2017-05-25T13:42:19Z-
dc.date.issued2012-
dc.identifier.citationKaraçalı, B. (2012). Hierarchical motif vectors for prediction of functional sites in amino acid sequences using quasi-supervised learning. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 9(5), 1432-1441. doi:10.1109/TCBB.2012.68en_US
dc.identifier.issn1545-5963-
dc.identifier.urihttp://doi.org/10.1109/TCBB.2012.68-
dc.identifier.urihttp://hdl.handle.net/11147/5615-
dc.description.abstractWe propose hierarchical motif vectors to represent local amino acid sequence configurations for predicting the functional attributes of amino acid sites on a global scale in a quasi-supervised learning framework. The motif vectors are constructed via wavelet decomposition on the variations of physico-chemical amino acid properties along the sequences. We then formulate a prediction scheme for the functional attributes of amino acid sites in terms of the respective motif vectors using the quasi-supervised learning algorithm that carries out predictions for all sites in consideration using only the experimentally verified sites. We have carried out comparative performance evaluation of the proposed method on the prediction of N-glycosylation of 55,184 sites possessing the consensus N-glycosylation sequon identified over 15,104 human proteins, out of which only 1,939 were experimentally verified N-glycosylation sites. In the experiments, the proposed method achieved better predictive performance than the alternative strategies from the literature. In addition, the predicted N-glycosylation sites showed good agreement with existing potential annotations, while the novel predictions belonged to proteins known to be modified by glycosylation.en_US
dc.description.sponsorshipEuropean Commission PIRG03-GA-2008-230903en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofIEEE/ACM Transactions on Computational Biology and Bioinformaticsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectFunctional attribute predictionen_US
dc.subjectHierarchical motif vectorsen_US
dc.subjectProtein sequence analysisen_US
dc.subjectForecastingen_US
dc.subjectLearning frameworksen_US
dc.titleHierarchical motif vectors for prediction of functional sites in amino acid sequences using quasi-supervised learningen_US
dc.typeArticleen_US
dc.authoridTR11527en_US
dc.institutionauthorKaraçalı, Bilge-
dc.departmentİzmir Institute of Technology. Electrical and Electronics Engineeringen_US
dc.identifier.volume9en_US
dc.identifier.issue5en_US
dc.identifier.startpage1432en_US
dc.identifier.endpage1441en_US
dc.identifier.wosWOS:000307299200018en_US
dc.identifier.scopus2-s2.0-84864913588en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1109/TCBB.2012.68-
dc.identifier.pmid22585139en_US
dc.relation.doi10.1109/TCBB.2012.68en_US
dc.coverage.doi10.1109/TCBB.2012.68en_US
dc.identifier.wosqualityQ1-
dc.identifier.scopusqualityQ2-
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairetypeArticle-
item.cerifentitytypePublications-
crisitem.author.dept03.05. Department of Electrical and Electronics Engineering-
Appears in Collections:Electrical - Electronic Engineering / Elektrik - Elektronik Mühendisliği
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
5615.pdfMakale993.4 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

4
checked on Nov 22, 2024

WEB OF SCIENCETM
Citations

3
checked on Nov 23, 2024

Page view(s)

644
checked on Nov 25, 2024

Download(s)

278
checked on Nov 25, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.