Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/5615
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Karaçalı, Bilge | - |
dc.date.accessioned | 2017-05-25T13:42:19Z | - |
dc.date.available | 2017-05-25T13:42:19Z | - |
dc.date.issued | 2012 | - |
dc.identifier.citation | Karaçalı, B. (2012). Hierarchical motif vectors for prediction of functional sites in amino acid sequences using quasi-supervised learning. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 9(5), 1432-1441. doi:10.1109/TCBB.2012.68 | en_US |
dc.identifier.issn | 1545-5963 | - |
dc.identifier.uri | http://doi.org/10.1109/TCBB.2012.68 | - |
dc.identifier.uri | http://hdl.handle.net/11147/5615 | - |
dc.description.abstract | We propose hierarchical motif vectors to represent local amino acid sequence configurations for predicting the functional attributes of amino acid sites on a global scale in a quasi-supervised learning framework. The motif vectors are constructed via wavelet decomposition on the variations of physico-chemical amino acid properties along the sequences. We then formulate a prediction scheme for the functional attributes of amino acid sites in terms of the respective motif vectors using the quasi-supervised learning algorithm that carries out predictions for all sites in consideration using only the experimentally verified sites. We have carried out comparative performance evaluation of the proposed method on the prediction of N-glycosylation of 55,184 sites possessing the consensus N-glycosylation sequon identified over 15,104 human proteins, out of which only 1,939 were experimentally verified N-glycosylation sites. In the experiments, the proposed method achieved better predictive performance than the alternative strategies from the literature. In addition, the predicted N-glycosylation sites showed good agreement with existing potential annotations, while the novel predictions belonged to proteins known to be modified by glycosylation. | en_US |
dc.description.sponsorship | European Commission PIRG03-GA-2008-230903 | en_US |
dc.language.iso | en | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.relation.ispartof | IEEE/ACM Transactions on Computational Biology and Bioinformatics | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Functional attribute prediction | en_US |
dc.subject | Hierarchical motif vectors | en_US |
dc.subject | Protein sequence analysis | en_US |
dc.subject | Forecasting | en_US |
dc.subject | Learning frameworks | en_US |
dc.title | Hierarchical motif vectors for prediction of functional sites in amino acid sequences using quasi-supervised learning | en_US |
dc.type | Article | en_US |
dc.authorid | TR11527 | en_US |
dc.institutionauthor | Karaçalı, Bilge | - |
dc.department | İzmir Institute of Technology. Electrical and Electronics Engineering | en_US |
dc.identifier.volume | 9 | en_US |
dc.identifier.issue | 5 | en_US |
dc.identifier.startpage | 1432 | en_US |
dc.identifier.endpage | 1441 | en_US |
dc.identifier.wos | WOS:000307299200018 | en_US |
dc.identifier.scopus | 2-s2.0-84864913588 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.doi | 10.1109/TCBB.2012.68 | - |
dc.identifier.pmid | 22585139 | en_US |
dc.relation.doi | 10.1109/TCBB.2012.68 | en_US |
dc.coverage.doi | 10.1109/TCBB.2012.68 | en_US |
dc.identifier.wosquality | Q1 | - |
dc.identifier.scopusquality | Q2 | - |
item.fulltext | With Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.languageiso639-1 | en | - |
item.grantfulltext | open | - |
item.openairetype | Article | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 03.05. Department of Electrical and Electronics Engineering | - |
Appears in Collections: | Electrical - Electronic Engineering / Elektrik - Elektronik Mühendisliği PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
4
checked on Nov 22, 2024
WEB OF SCIENCETM
Citations
3
checked on Nov 23, 2024
Page view(s)
644
checked on Nov 25, 2024
Download(s)
278
checked on Nov 25, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.