Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/5538
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Tayfur, Gökmen | - |
dc.contributor.author | Nadiri, Ata A. | - |
dc.contributor.author | Moghaddam, Asghar A. | - |
dc.date.accessioned | 2017-05-17T10:48:07Z | - |
dc.date.available | 2017-05-17T10:48:07Z | - |
dc.date.issued | 2014-03 | - |
dc.identifier.citation | Tayfur, G., Nadiri, A. A., and Moghaddam, A. A. (2014). Supervised intelligent committee machine method for hydraulic conductivity estimation. Water Resources Management, 28(4), 1173-1184. doi:10.1007/s11269-014-0553-y | en_US |
dc.identifier.issn | 0920-4741 | - |
dc.identifier.issn | 1573-1650 | - |
dc.identifier.uri | https://doi.org/10.1007/s11269-014-0553-y | - |
dc.identifier.uri | http://hdl.handle.net/11147/5538 | - |
dc.description.abstract | Hydraulic conductivity is the essential parameter for groundwater modeling and management. Yet estimation of hydraulic conductivity in a heterogeneous aquifer is expensive and time consuming. In this study; artificial intelligence (AI) models of Sugeno Fuzzy Logic (SFL), Mamdani Fuzzy Logic (MFL), Multilayer Perceptron Neural Network associated with Levenberg-Marquardt (ANN), and Neuro-Fuzzy (NF) were applied to estimate hydraulic conductivity using hydrogeological and geoelectrical survey data obtained from Tasuj Plain Aquifer, Northwest of Iran. The results revealed that SFL and NF produced acceptable performance while ANN and MFL had poor prediciton. A supervised intelligent committee machine (SICM), which combines the results of individual AI models using a supervised artificial neural network, was developed for better prediction of the hydraulic conductivity in Tasuj plain. The performance of SICM was also compared to those of the simple averaging and weighted averaging intelligent committee machine (ICM) methods. The SICM model produced reliable estimates of hydraulic conductivity in heterogeneous aquifers. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer Verlag | en_US |
dc.relation.ispartof | Water Resources Management | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Artificial intelligence methods | en_US |
dc.subject | Heteregenous aquifer | en_US |
dc.subject | Hydraulic conductivity | en_US |
dc.subject | Supervised intelligence committee machine | en_US |
dc.subject | Tasuj plain | en_US |
dc.title | Supervised intelligent committee machine method for hydraulic conductivity estimation | en_US |
dc.type | Article | en_US |
dc.authorid | TR2054 | en_US |
dc.institutionauthor | Tayfur, Gökmen | - |
dc.department | İzmir Institute of Technology. Civil Engineering | en_US |
dc.identifier.volume | 28 | en_US |
dc.identifier.issue | 4 | en_US |
dc.identifier.startpage | 1173 | en_US |
dc.identifier.endpage | 1184 | en_US |
dc.identifier.wos | WOS:000332505400018 | en_US |
dc.identifier.scopus | 2-s2.0-84896738245 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.doi | 10.1007/s11269-014-0553-y | - |
dc.relation.doi | 10.1007/s11269-014-0553-y | en_US |
dc.coverage.doi | 10.1007/s11269-014-0553-y | en_US |
dc.identifier.wosquality | Q1 | - |
dc.identifier.scopusquality | Q1 | - |
item.fulltext | With Fulltext | - |
item.grantfulltext | open | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
crisitem.author.dept | 03.03. Department of Civil Engineering | - |
Appears in Collections: | Civil Engineering / İnşaat Mühendisliği Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
45
checked on Nov 15, 2024
WEB OF SCIENCETM
Citations
41
checked on Nov 9, 2024
Page view(s)
222
checked on Nov 18, 2024
Download(s)
368
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.