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Abstract Hydraulic conductivity is the essential parameter for groundwater modeling and
management. Yet estimation of hydraulic conductivity in a heterogeneous aquifer is expensive
and time consuming. In this study; artificial intelligence (AI) models of Sugeno Fuzzy Logic
(SFL), Mamdani Fuzzy Logic (MFL), Multilayer Perceptron Neural Network associated with
Levenberg—Marquardt (ANN), and Neuro-Fuzzy (NF) were applied to estimate hydraulic
conductivity using hydrogeological and geoelectrical survey data obtained from Tasuj Plain
Aquifer, Northwest of Iran. The results revealed that SFL and NF produced acceptable
performance while ANN and MFL had poor prediciton. A supervised intelligent committee
machine (SICM), which combines the results of individual Al models using a supervised
artificial neural network, was developed for better prediction of the hydraulic conductivity in
Tasuj plain. The performance of SICM was also compared to those of the simple averaging
and weighted averaging intelligent committee machine (ICM) methods. The SICM model
produced reliable estimates of hydraulic conductivity in heterogeneous aquifers.

Keyword Hydraulic conductivity - Artificial intelligence methods - Supervised intelligence
committee machine - Tasuj plain - Heteregenous aquifer

1 Introduction

Estimation of hydrogeological parameters is crucial for managing groundwater resources,
contaminant transport, and designing remediation measures. Variety of numerical models were
developed for parameter estimation, such as hydraulic conductivity, porosity, soil water
retention (Tsai and Li 2008). However, due to some limitations of the numerical models such
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as low flexibility, high complexity, cost, and time consuming, other methodologies such as
artificial intelligence (AI) models were recently developed for this purpose.

Hitherto, artificial intelligence (AI) models such as fuzzy logic (FL) (Bardossy and Disse,
1993; Batyrshin et al. 2005; Tutmez and Hatipoglu 2007; Chu and Chang 2009; Helmy et al.
2010; Anifowose and Abdulraheem 2011; Tayfur 2012; Morankar et al. 2013), artificial neural
network (ANN) (Schaap and Leij 1998; Merdun et al. 2006; Nayak et al. 2006; Samani et al.
2007; Tayfur et al. 2007, Mohanty et al. 2010; Motaghian and Mohammadi 2011;
Shirmohammadi et al. 2013;), and neuro-fuzzy (NF) (Tutmez 2010; Huang et al. 2010;
Moosavi et al. 2013; Safavi et al. 2013) have gained popularity for the hydrogeological
parameter estimation.

Hydrogeological parameters such as hydraulic conductivity are not clear-cut and most of
the time they are associated with uncertainties. Hence, for hydraulic conductivity estimation,
the researchers have tried to evaluate different Al methods with various abilities such as fuzzy
logic (FL) (Ross et al. 2007; Olatunji et al. 2011; Colin et al. 2011), artificial neural network
(ANN) (Tamari et al. 1996; Garcia and Shigidi 2006; Sun et al. 2011; Inan and Tayfur 2012;
Gaur et al. 2013), and neuro-fuzzy (NF) (Malki and Baldwin 2002; Hurtado et al. 2009; Sezer
et al. 2010; Dhar and Patil 2012).

Generally, more than one Al model provides a similar acceptable fit to the observations
(Tayfur and Singh 2011). Therefore, usage of multi-model interface can be advantages. For
hydraulic conductivity estimation, intelligent committee machine (ICM) which is an artificial
intelligence multi-model interface and used in different disciplines (Lim 2005; Chen and Lin
2006) can be utilized. The ICM uses the results of Al models in order to arrive at overall
decision that is supposed to be superior to that of any individual Al model acting alone (Hornik
et al. 1989; Naftaly et al. 1997).

The ICM can combine Al model results with a simple averaging (Naftaly et al. 1997; Chen
and Lin 2006) or by weighted averaging. Using simple averaging produces the final output by
linearly combining the outputs of individual AI models through the same weights. Although, it
can produce better results, the AI models should have different weights based on their
efficiencies. Using weighted averaging ascribes different weights to Al models which are
generally optimized by genetic algorithm (GA) (Kadkhodaie-Ilkhchi et al. 2009; Labani et al.
2010) to find the best fit of the ICM output to the measurements. This method has linear nature
to combine the Al models.

Instead of linearly combining Al model results, this study introduces a supervised intelli-
gent committee machine (SICM) that replaces linear combination with artificial neural net-
work (ANN). In SICM, the ANN receives individual model estimations as input and derives a
new estimation.

Each AI method has its advantages and disadvantages. For example; ANN is a powerful
tool for performing nonlinear input—output mapping. However, it is a black-box model which
cannot reveal insight into understanding the physics of the process. It is a good interpolator but
a poor extrapolator. MFL is a fuzzy rule based method requiring construction of many fuzzy
rules, which can be unattractive from a practical point of view. Yet, it is attractive since it can
account for ambiguities, and uncertainity and it is more in line with human thinking since it
uses verbal statetments. SFL also operates like MFL with fuzzy rules that contain mathemat-
ical expressions. Hence, this method requires parameter estimation, which cannot be always an
casy task. NF in a way combines ANN and FL methods. The objective of this study is to reap
advantages of each Al method by employing the SICM to predict the very funda-
mental aquifer parameter of hydraulic conductivity. Thus, this study, using the SICM,
accomplished the estimation of hydraulic conductivity in unconfined and heteroge-
neous Tasuj aquifer.
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2 Study Area

The Tasuj plain, which is about 302.67 km?, is a subbasin of Urmia Lake basin (Fig. 1) and
located in the northwestern part of Tabriz city in Iran. The study area is surrounded by Urmia
Lake (south), Mishu Mountains (north), Salmas Plain (west) and Shabestar Plain (east). The
prevailing climate in the Tasuj plain is semiarid-cold (Nadiri et al. 2013). Average annual
precipitation is about 232.7 mm (based on measurements at Tasuj climatological station,
2000-2009) (Research Center of Agriculture and Natural Resources of East Azerbaijan
Province 2010). In the Tasuj basin, there is no permanent river and there is only a few seasonal
rivers originating from Mishu Mountains. Agriculture is the main economic activity in Tasuj
City and 15 villages in the study area. The main source for drinking, industrial and agricultural
demands in the plain is groundwater.

The Tasuj plain aquifer is a heterogeneous and unconfined and the groundwater in the
aquifer was withdrawn through 147 water wells, 70 springs and 70 ganats (Nadiri et al. 2013).
The 24 springs and 14 ganats became dry in the recent years due to over-drawing. Therefore,
identification of hydrogeological parameters such as hydraulic conductivity in the study area is
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Fig. 1 Tasuj Plain and locations of hydraulic conductivity measurment
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vital for groundwater management. More information about the study area is given in Nadiri
et al. (2013).

Based on the a geo-clectrical survey that was conducted by the Abkav Consulting
Engineering Co. (1973), the saturated zone thickness in the aquifer (B) and transverse
resistance (R,) were estimated at 63 points. The maximum thickness is 182 m and the
minimum thickness is 44 m. To estimate K values in each point, both parameters are
needed. Therefore, B and R, distributions were obtained by an ordinary kriging
method.

Hydraulic conductivity in the saturated zone is related to electrical resistivity (p) which is
the transverse resistance (R;) divided by the thickness of the saturated zone (B). The electrical
resistivity (p), on the other hand, depends on the salinity of formation water (Putvance 2000).
Therefore, the electrical conductivity (EC), which responds to the salinity of formation water,
is also related to hydraulic conductivity. Hence, in this study B, EC, and O, which is the
distance of each estimation point to the position of down corner of the right side of the study
area map (see Fig. 1) to take into account the geological and geomorphological effects, are
used as input variables for the Al models.

In 132 locations of Tasuj unconfined aquifer, hydraulic conductivity was determined by the
constant and step drawdown pumping tests that were carried out by the water resources
authority of East Azarbaijan (Fig. 1). The maximum K is 9.74 m/day and the minimum K is
0.13 m/day. The mean and the standard deviation of K are 2.35 and 3.30 m/day, respectively
(Nadiri et al. 2013).

3 Models
3.1 Fuzzy Logic (FL)

In fuzzy set theory, each element may belong to a set to a degree which can take values ranging
from 0 to 1 (Zadeh 1965). The key idea in fuzzy logic is the allowance of partial belongings of
any object to different subsets of a universal set. Fuzzy sets have ambiguous boundaries and
gradual transitions between defined sets and this makes it to be appropriate to deal with the
nature of uncertainty (Calvo and Estrada 2009). Each fuzzy set is represented by a membership
function (MF), which can be Gaussian, triangular, or trapezoidal. Intuition, rank ordering, and
inductive reasoning can be, among many, ways to assign membership functions to fuzzy
variables. The intuitive approach is instead used commonly because it is simple and derived
from the innate intelligence and understanding of human beings.

A FL model consists of four main parts i.e., Fuzzifier, Inference Engine, Fuzzy Rule Base,
and Defuzzifier (Tayfur 2012). Fuzzification forms fuzzy sets for input—output variables using
membership functions. The fuzzy rule base contains rules that include all possible fuzzy
relations between inputs and outputs. These rules are expressed in the IF-THEN format. In
the Mamdani Fuzzy Logic (MFL) rule system both antecedent and consequent parts of a rule
contain verbal statements. In Sugeno Fuzzy Logic (SFL), the consequent part of the rule
contains mathematical expressions, relating output variable to input variables. The fuzzy
inference engine takes into account all the fuzzy rules in the fuzzy rule base and learns how
to transform a set of inputs to corresponding outputs that are composed to form a single fuzzy
subset for the output variable. Defuzzification converts the resulting fuzzy output from the
fuzzy inference engine to a number. The details of MFL can be obtained from Mamdani and
Assilian (1975), Mamdani (1976, 1977) and Tayfur (2012). The details of SFL can be found
elsewhere (Takagi and Sugeno 1985; Sugeno 1985; Akbari et al. 2009).
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3.2 Attificial Neural Network (ANN)

Arttificial neural networks are imitating human brain by using mathematical methods and have
been proven to be beneficial tools for simulating, predicting and forecasting hydrological
variables (Nadiri 2007; Nourani et al. 2008b; Piotrowski and Napiorkowski 2011; Siou et al.
2011; Tayfur 2012). The most widely used neural network is the multi-layer perceptron (MLP)
(Hornik et al. 1989; Haykin 1999; Sulaiman et al. 2011; Fijani et al. 2012; Mustafa et al. 2012).
In the MLP, as a feed forward ANN, the neurons are organized in layers and each neuron is
connected fully with neurons in the next layer. A typical three-layer feedforward neural
network (FFNN) is shown in Fig. 2, where the input signal propagates through the network
in a forward direction. In a FFNN, the input quantities (x;) are fed into the input layer neurons
which, in turn, pass them on to the hidden layer neurons (z;) after multiplying them by the
connection weights (v;) (Fig. 2). A hidden layer neuron adds up the weighted input received
from each input neuron (x;v;), associates it with a bias (b;), and then passes the result (net;) on
through the activation function. Similarly, the produced outputs from the inner neurons are
passed to the network output neuron. The net information received by the output neuron from
the inner neurons is passed through the activiation function to produce the network output. The
optimal weights are found by minimizing a predetermined error function (E) of the following

form (ASCE 2000):
E=Y % () (1)
P p

where yi = the component of an ANN output vector ¥, ¢; = the component of a target output
vector T: p = the number of output neurons; and P = the number of training patterns. The
gradient-descent method, along with the chain rule of differentiation, is generally employed to
modify the network weights as (Tayfur 2012):
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Fig. 2 A typical feedforward ANN model
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where Av(n) and Av;(n—1) = the weight increments between node i and j during the n'™ and
(n-1)™ pass or epoch; & = the learning rate; and « = the momentum factor.

This study adopted the hyperbolic tangent activation function (Tayfur 2012) and the
training algorithm of Levenberg-Marquardt (LM) (Daliakopoulos et al. 2005; Nourani et al.
2008a, 2008b; Mustafa et al. 2012).

3.3 Neuro-Fuzzy (NF)

Neuro-fuzzy modeling is a combination technique for describing the behavior of a
system using fuzzy inference rules within a neural network structure. The NF infer-
ence system consists of a given input/output data set and SFL whose MF parameters
are tuned using a hybrid algorithm (Wolkenhauer 2001; Sanikhani and Kisi 2012).
The most compatible method for construction of NF model is Sugeno method using
subtractive clustering.

In this study, the NF architecture of a five-layer MLP network was considered in
the hydraulic conductivity estimation. In the first layer, membership function of input
data were generated like the SFL model. Also, a generalized Gaussian function was
used to develop membership functions. In the second layer, the firing strength was
calculated for the each rule via multiplication. In the third layer the normalized firing
strengths were computed for each neuron. The contribution of the each rule in the
model output was calculated based on the first order SFL method in the forth layer.
Lastly, the final output as the weighted average of all rule outputs (aggregation) was
calculated in the fifth layer. The NF parameters and membership function parameters
were estimated using the hybrid algorithm, which is a combination of the gradient
descent and least-squares method (Aqil et al. 2007; Akrami et al. 2013).

3.4 SICM Model

The Intelligent committee machine approach combines the artificial intelligence model
results to reap advantages of all Al models to produce final output. Previous works
recommended two methods of the simple averaging and the weighted averaging for
construction of SICM model (Chen and Lin 2006; Labani et al. 2010). This study
instead introduces a supervised intelligent committee machine (SICM) model that
employs ANN as a supervised combiner of Al models.

The SICM model consists of four artificial intelligence models shown in Fig. 3 and includes
two major steps. In the first step, hydraulic conductivity is estimated using the artificial
intelligence models including MFL, SFL, ANN and NF. In the second step, a supervised

KSI cM

Fig. 3 The Schematic structure of SICM model
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artificial neural network is constructed as a nonlinear and supervised combiner. The mathe-
matical expression of the SICM model can be expressed as follows:

K; = AI,(0, EC, B) (3)

K; is the output of the each Al model which is used as /™ input to the SICM model.

4 Model Calibration and Testing
4.1 Mamdani Fuzzy Model

Fuzzy c-means (FCM) clustering for MFL (Arrell et al. 2007; Kannan et al. 2012) was used for
the construction of a fuzzy rule base (Li et al. 2001). Gaussian membership functions were
employed for the input variables. Results showed that the optimum number of clusters for the
hydraulic conductivity is 12. The parameters of Gaussian membership function are
summarised in Table 1. The model was calibrated with 105 data sets, with the root mean
square (RMSE) of 1.21 m/day and the determination coefficient (R?) of 0.77. The model was
then tested against 27 data sets, with a performance of RMSE=1.89 m/day and R*=0.63.

4.2 Sugeno Fuzzy Model

Subtractive Clustering (SC) for SFL (Chiu 1994) was applied for the data clustering. Radius
clustering was selected based on the minimum RMSE. Choosing a value of 0.4 for clustering
radius was associated with the lowest RMSE of 0.99 m/day which generated six fuzzy IF-
THEN rules. The model was calibrated with 105 data sets with RMSE=0.98 m/day and the
R?=0.77. The model was then tested against 27 data sets, with a performance of RMSE=
1.67 m/day and R*=0.72.

Table 1 The parameters of Gaussian membership functions for MFL model (o : standard daviation of normal
distribution, ¢: mean of data)

Input O(m) EC(micro.s/cm) B(m) Output K (m/d)
Parameter MF No. o c [} c o c (o) c

1 2525 19220 277.5 2429 5.565 106.8 0.6044 0.6074
2 1995 22710 121.1 1530 16.53 158.8 0.7073 03167
3 1880 31900 1322 1454 6.123 114.2 0.7032 1.353
4 1613 30370 164.5 1123 6.295 119 1.13 3.588
5 1885 23880 205.1 2002 8.147 98.35 0.8993 2489
6 2404 34400 145.8 1631 6.715 93.75 1.405 4262
7 2740 17900 293.6 2516 5.229 110.1 0.6001 0.565
8 1498 27840 1352 1432 7.986 109 1.717 4.129
9 3905 12250 140.5 1501 5.48 98.53 0.4931 1.445
10 1448 27720 122.5 1301 6.438 98.87 0.6457 11.31

11 1480 29090 141.6 1279 7.187 109.9 1.162 3.688
12 3154 15720 304.5 2497 6.596 107.5 0.6449 1.122
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4.3 Artificial Neural Network (ANN)

A three layer network with Levenberg-Marquardt (LM) training algorithm, which is denoted
as MLP-LM, was used for K estimation. The training was accomplished with RMSE=1.03 m/
day and R*=0.82. The testing performance was RMSE=1.85 m/day and R*=0.63.

4.4 Neuro-Fuzzy(NF)

The same clusters of input and outputs and rules were used for NF construction. The hybrid
algorithm which is a combination of the least-squares method and the back propagation
gradient descent method was applied to optimize and adjust Gaussian membership function
parameter and the coefficients of output linear equation (Zounemat-Kermani and Teshnehlab
2008). RMSE=0.83 m/day and R*=0.85 for the training and RMSE=1.51 m/day and R*=
0.76 for the testing stages were obtained.

Based on the above RMSE and R results; it can be stated that MFL and ANN showed poor
performance compared to those of SFL and NF models. At this stage, we can take advantage
of using the supervised intelligence committee machine (SICM) to obtain better estimations of
K values.

5 SICM Model
5.1 SICM Model Training and Testing

The SICM method shown in Fig. 3 adopts a simple ANN method to re-estimate hydraulic
conductivity values, predicted by the SFL, MFL, ANN, and NF in the training step (105
sample data). The ANN model had 4 neurons (IA( via SFL, MFL, ANN, and NF) in the input
layer, three neurons in the hidden layer and single neuron in the output layer for the target
Ksicp - The network was successfully trained with 500 epochs and RMSE of 0.42 m/day.
Then, the SICM model was tested against 27 data sets. The RMSE and R* for SICM
predictions were computed as 0.62 m/day and 0.94, respectively. Comparing the error measure
values with those of individual models above, it is seen that SICM outperforms individual Al
models with low RMSE and high R? values. This result implies that SICM model shows high
performance for predicting the hydraulic conductivity values in the heterogeneous unconfined
aquifer in Tasuj Plain. Figure 4 shows the distribution of K in Tasuj Plain which was
interpolated from the estimated values by the SICM model.

5.2 Comparative Analysis

Here, SICM model performance was compared against that of the ICM model. For the simple
averaging method, the ICM estimated hydraulic conductivity using SFL, MFL, ANN, and NF
with equal weights as follows:

Ksicnr = 0.25K sz 4 0.25K ygz, + 0.25K 4y + 0.25K e (4)

For the weighted averaging method, optimal weights, w; were determined by minimizing
the mean squared error (MSE):

US| - - . N 2
MSE = Z pn (Wle:SFL + WK prr + Wik avv + W4Ki,NF_Ki> (5)
=1
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Fig. 4 Distribution of estimated hydraulic conductivity via SICM model

where m is the number of training data (105 samples). The weights, w; range between 0 and 1
and the sum of weights is unity, )’ w,=1.

A GA optimizer in MATLAB toolbox was used to minimize the MSE. The initial
population size was set to 25. The maximum number of generations went up to 140. The
probability for crossover operation was 80 % and the mutation function was Gaussian. After
optimal weights were obtained by GA, the ICM model estimated hydraulic conductivity by the
following equation:

]?CM[S = 0.27[?SFL + 0-17I?MLF + 0.211?,4]\/}\/ + 034]?1\/}: (6)

The performance results of the SICM and ICM are shown in Table 2 for K data for the
testing stage. As seen, the SICM better performed than the ICM, which in turn also
outperformed the individual models, presented above. According to Table 2, ICM with
weighted averaging performs better than ICM with simple averaging, which agrees to
Kadkhodaie-Ilkhchi et al. (2009) and Labani et al. (2010).

6 Conclusions
This study introduced a supervised intelligent committee machine (SICM) algorithm, which

combines the outcomes of individual Al models, to predict the hydraulic conductivity of Tasuj
aquifer. In SICM, the ANN receives predictions of four individual models—Sugeno fuzzy

Table 2 Performance measures for SICM and ICM (testing stage)

Criteria SICM ICM with simple averaging ICM with weighted averaging
R? 0.94 0.83 0.87
RMSE (m/d) 0.62 1.40 1.28
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logic (SFL), Mamdani fuzzy logic (MFL), neuro-fuzzy (NF), and artificial neural network
(ANN) — as input and derives a new estimation.
Following conclusions can be drawn from this study:

1. MFL and ANN showed poor performance compared to those of SFL and NF models in
predicting hydraulic conductivity values. It can be stated that SFL and NF are more
applicable for the estimation of hydraulic conductivity in the heterogeneous and uncon-
fined Tasuj aquifer.

2. SICM model can be employed to predict hydraulic conductivity values.

ICM and SICM models produced better performance than the individual ones.

4. The SICM is more capable than ICM in predicting hydraulic conductivities of the
heterogeneous and unconfined aquifer, Tasuj plain, as a case study.

5. Most of the aquifers in nature are heterogeneous and complex. Therefore, the presented
method (SICM) can be used for prediction of different hydrogeological parameters such as
porosity, water content and etc., in various case studies.

(98]

Note that in SICM method, the main focus is to maximize the performance by optimizing
the weights assigned to each Al model. Yet, the main limitation of this method is that it cannot
consider the parsimony and uncertainty of the assigned weights to individual models, which
can be researched in future. Also, the influence of Kriging interpolation of B and Rt on the
output of AI models was not investigated in this study. It could be a topic of a future research.
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