Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/5484
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKaraimer, Hakkı Can-
dc.contributor.authorBaştanlar, Yalın-
dc.date.accessioned2017-05-11T14:02:17Z-
dc.date.available2017-05-11T14:02:17Z-
dc.date.issued2015-
dc.identifier.citationKaraimer, H. C., and Baştanlar, Y. (2015). Detection and classification of vehicles from omnidirectional videos using temporal average of silhouettes. In J. Braz (Ed.), Paper presented at the 10th International Conference on Computer Vision Theory and Applications, VISAPP 2015, Berlin, Germany; 11-14 March (pp.197-204). Setúbal, Portugal: SciTePress.en_US
dc.identifier.isbn9789897580901-
dc.identifier.urihttp://hdl.handle.net/11147/5484-
dc.description10th International Conference on Computer Vision Theory and Applications, VISAPP 2015; Berlin; Germany; 11 March 2015 through 14 March 2015en_US
dc.description.abstractThis paper describes an approach to detect and classify vehicles in omnidirectional videos. The proposed classification method is based on the shape (silhouette) of the detected moving object obtained by background subtraction. Different from other shape based classification techniques, we exploit the information available in multiple frames of the video. The silhouettes extracted from a sequence of frames are combined to create an 'average' silhouette. This approach eliminates most of the wrong decisions which are caused by a poorly extracted silhouette from a single video frame. The vehicle types that we worked on are motorcycle, car (sedan) and van (minibus). The features extracted from the silhouettes are convexity, elongation, rectangularity, and Hu moments. The decision boundaries in the feature space are determined using a training set, whereas the performance of the proposed classification is measured with a test set. To ensure randomization, the procedure is repeated with the whole dataset split differently into training and testing samples. The results indicate that the proposed method of using average silhouettes performs better than using the silhouettes in a single frame.en_US
dc.description.sponsorshipTUBITAK (project 113E107)en_US
dc.language.isoenen_US
dc.publisherINSTICCen_US
dc.relationinfo:eu-repo/grantAgreement/TUBITAK/EEEAG/113E107en_US
dc.relation.ispartofVISAPP 2015 - 10th International Conference on Computer Vision Theory and Applications; VISIGRAPP, Proceedingsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectObject detectionen_US
dc.subjectOmnidirectional camerasen_US
dc.subjectOmnidirectional videoen_US
dc.subjectVehicle classificationen_US
dc.subjectVehicle detectionen_US
dc.titleDetection and Classification of Vehicles From Omnidirectional Videos Using Temporal Average of Silhouettesen_US
dc.typeConference Objecten_US
dc.authoridTR176747en_US
dc.institutionauthorKaraimer, Hakkı Can-
dc.institutionauthorBaştanlar, Yalın-
dc.departmentİzmir Institute of Technology. Computer Engineeringen_US
dc.identifier.volume2en_US
dc.identifier.startpage197en_US
dc.identifier.endpage204en_US
dc.identifier.scopus2-s2.0-84939557784en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
item.fulltextWith Fulltext-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextopen-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept03.04. Department of Computer Engineering-
Appears in Collections:Computer Engineering / Bilgisayar Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
5484.pdfConference Paper1.66 MBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

4
checked on Dec 20, 2024

Page view(s)

346
checked on Dec 23, 2024

Download(s)

264
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.