Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/5479
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Zarechnev, Mikhail | - |
dc.contributor.author | Kumova, Bora İsmail | - |
dc.date.accessioned | 2017-05-11T10:44:19Z | - |
dc.date.available | 2017-05-11T10:44:19Z | - |
dc.date.issued | 2015 | - |
dc.identifier.citation | Zarechnev, M., and Kumova, B. İ. (2015). Ontology-based fuzzy-syllogistic reasoning. Lecture Notes in Computer Science, 9101, 179-188. doi:10.1007/978-3-319-19066-2_18 | en_US |
dc.identifier.isbn | 9783319190655 | - |
dc.identifier.issn | 0302-9743 | - |
dc.identifier.issn | 1611-3349 | - |
dc.identifier.uri | http://doi.org/10.1007/978-3-319-19066-2_18 | - |
dc.identifier.uri | http://hdl.handle.net/11147/5479 | - |
dc.description | 28th International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2015; Seoul; South Korea; 10 June 2015 through 12 June 2015 | en_US |
dc.description.abstract | We discuss the Fuzzy-Syllogistic System (FSS) that consists of the well-known 256 categorical syllogisms, namely syllogistic moods, and Fuzzy- Syllogistic Reasoning (FSR), which is an implementation of the FSS as one complex approximate reasoning mechanism, in which the 256 moods are interpreted as fuzzy inferences. Here we introduce a sample application of FSR as ontology reasoner. The reasoner can associate up to 256 possible fuzzyinferences with truth ratios in [0,1] for every triple concept relationship of the ontology. We further discuss a transformation technique, by which the truth ratio of a fuzzy-inference can increase, by adapting the fuzzy-quantifiers of a fuzzy-inference to the syllogistic logic of the sample propositions. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer Verlag | en_US |
dc.relation.ispartof | Lecture Notes in Computer Science | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Approximate reasoning | en_US |
dc.subject | Categorical syllogisms | en_US |
dc.subject | Ontologies | en_US |
dc.subject | Fuzzy inference | en_US |
dc.title | Ontology-based fuzzy-syllogistic reasoning | en_US |
dc.type | Conference Object | en_US |
dc.institutionauthor | Kumova, Bora İsmail | - |
dc.department | İzmir Institute of Technology. Computer Engineering | en_US |
dc.identifier.volume | 9101 | en_US |
dc.identifier.startpage | 179 | en_US |
dc.identifier.endpage | 188 | en_US |
dc.identifier.wos | WOS:000363236300018 | en_US |
dc.identifier.scopus | 2-s2.0-84946431016 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.doi | 10.1007/978-3-319-19066-2_18 | - |
dc.relation.doi | 10.1007/978-3-319-19066-2_18 | en_US |
dc.coverage.doi | 10.1007/978-3-319-19066-2_18 | en_US |
dc.identifier.wosquality | N/A | - |
dc.identifier.scopusquality | Q3 | - |
item.fulltext | With Fulltext | - |
item.grantfulltext | open | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.openairetype | Conference Object | - |
crisitem.author.dept | 03.04. Department of Computer Engineering | - |
Appears in Collections: | Computer Engineering / Bilgisayar Mühendisliği Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
3
checked on Nov 15, 2024
Page view(s)
256
checked on Nov 18, 2024
Download(s)
280
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.