Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/5428
Title: | Linking peroxiredoxin and vacuolar-ATPase functions in calorie restriction-mediated life span extension | Authors: | Molin, Mikael Demir, Ayşe Banu |
Keywords: | Adenosine triphosphatase Peroxiredoxin Reactive oxygen metabolite Calorie restriction Free radical Hydrogen peroxide Iron metabolism |
Publisher: | Hindawi Publishing Corporation | Source: | Molin, M., and Demir, A. B. (2014). Linking peroxiredoxin and vacuolar-ATPase functions in calorie restriction-mediated life span extension. International Journal of Cell Biology. doi:10.1155/2014/913071 | Abstract: | Calorie restriction (CR) is an intervention extending the life spans of many organisms. The mechanisms underlying CR-dependent retardation of aging are still poorly understood. Despite mechanisms involving conserved nutrient signaling pathways proposed, few target processes that can account for CR-mediated longevity have so far been identified. Recently, both peroxiredoxins and vacuolar-ATPases were reported to control CR-mediated retardation of aging downstream of conserved nutrient signaling pathways. In this review, we focus on peroxiredoxin-mediated stress-defence and vacuolar-ATPase regulated acidification and pinpoint common denominators between the two mechanisms proposed for how CR extends life span. Both the activities of peroxiredoxins and vacuolar-ATPases are stimulated upon CR through reduced activities in conserved nutrient signaling pathways and both seem to stimulate cellular resistance to peroxide-stress. However, whereas vacuolar-ATPases have recently been suggested to control both Ras-cAMP-PKA- and TORC1-mediated nutrient signaling, neither the physiological benefits of a proposed role for peroxiredoxins in H 2O2-signaling nor downstream targets regulated are known. Both peroxiredoxins and vacuolar-ATPases do, however, impinge on mitochondrial iron-metabolism and further characterization of their impact on iron homeostasis and peroxide-resistance might therefore increase our understanding of the beneficial effects of CR on aging and age-related diseases. © 2014 Mikael Molin and Ayse Banu Demir. | URI: | http://doi.org/10.1155/2014/913071 http://hdl.handle.net/11147/5428 |
ISSN: | 1687-8876 |
Appears in Collections: | Molecular Biology and Genetics / Moleküler Biyoloji ve Genetik Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
5428.pdf | İnceleme (Review) | 397.03 kB | Adobe PDF | View/Open |
CORE Recommender
SCOPUSTM
Citations
20
checked on Nov 15, 2024
Page view(s)
170
checked on Nov 18, 2024
Download(s)
170
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.