Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/5427
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Çınaroğlu, İbrahim | - |
dc.contributor.author | Baştanlar, Yalın | - |
dc.date.accessioned | 2017-04-27T13:08:50Z | - |
dc.date.available | 2017-04-27T13:08:50Z | - |
dc.date.issued | 2014 | - |
dc.identifier.citation | Çınaroğlu, İ., and Baştanlar, Y. (2014, April 23-25). A Direct approach for human detection with catadioptric omnidirectional cameras. Paper presented at the 22nd Signal Processing and Communications Applications Conference. doi:10.1109/SIU.2014.6830719 | en_US |
dc.identifier.isbn | 9781479948741 | - |
dc.identifier.uri | http://doi.org/10.1109/SIU.2014.6830719 | - |
dc.identifier.uri | http://hdl.handle.net/11147/5427 | - |
dc.description | 22nd Signal Processing and Communications Applications Conference, SIU 2014; Trabzon; Turkey; 23 April 2014 through 25 April 2014 | en_US |
dc.description.abstract | This paper presents an omnidirectional vision based solution to detect human beings. We first go through the conventional sliding window approaches for human detection. Then, we describe how the feature extraction step of the conventional approaches should be modified for a theoretically correct and effective use in omnidirectional cameras. In this way we perform human detection directly on the omnidirectional images without converting them to panoramic or perspective image. Our experiments, both with synthetic and real images show that the proposed approach produces successful results. © 2014 IEEE. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.relation.ispartof | 22nd Signal Processing and Communications Applications Conference, SIU 2014 | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Video cameras | en_US |
dc.subject | Human detection | en_US |
dc.subject | Object detection | en_US |
dc.subject | Omnidirectional cameras | en_US |
dc.subject | Pedestrian detection | en_US |
dc.title | A Direct Approach for Human Detection With Catadioptric Omnidirectional Cameras | en_US |
dc.type | Conference Object | en_US |
dc.authorid | TR176747 | - |
dc.institutionauthor | Çınaroğlu, İbrahim | - |
dc.institutionauthor | Baştanlar, Yalın | - |
dc.department | İzmir Institute of Technology. Computer Engineering | en_US |
dc.identifier.startpage | 2275 | en_US |
dc.identifier.endpage | 2279 | en_US |
dc.identifier.wos | WOS:000356351400548 | - |
dc.identifier.scopus | 2-s2.0-84903772827 | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.doi | 10.1109/SIU.2014.6830719 | - |
dc.relation.doi | 10.1109/SIU.2014.6830719 | en_US |
dc.coverage.doi | 10.1109/SIU.2014.6830719 | - |
dc.identifier.wosquality | N/A | - |
dc.identifier.scopusquality | N/A | - |
dc.identifier.wosqualityttp | Top10% | en_US |
item.cerifentitytype | Publications | - |
item.openairetype | Conference Object | - |
item.languageiso639-1 | en | - |
item.fulltext | With Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.grantfulltext | open | - |
crisitem.author.dept | 03.04. Department of Computer Engineering | - |
Appears in Collections: | Computer Engineering / Bilgisayar Mühendisliği Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
32
checked on Mar 7, 2025
WEB OF SCIENCETM
Citations
21
checked on Dec 21, 2024
Page view(s)
348
checked on Mar 10, 2025
Download(s)
334
checked on Mar 10, 2025
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.