Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/5215
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÖzbalta, Türkan Göksal-
dc.contributor.authorSezer, Alper-
dc.contributor.authorYıldız, Yusuf-
dc.date.accessioned2017-04-04T08:03:27Z
dc.date.available2017-04-04T08:03:27Z
dc.date.issued2012-12
dc.identifier.citationÖzbalta, T. G., Sezer, A. and Yıldız, Y. (2012). Models for prediction of daily mean indoor temperature and relative humidity: Education building in Izmir, Turkey. Indoor and Built Environment, 21(6), 772-781. doi:10.1177/1420326X11422163en_US
dc.identifier.issn1420-326X
dc.identifier.issn1420-326X-
dc.identifier.urihttp://dx.doi.org/10.1177/1420326X11422163
dc.identifier.urihttp://hdl.handle.net/11147/5215
dc.description.abstractIn this research, several models were developed to forecast the daily mean indoor temperature (IT) and relative humidity values in an education building in Izmir, Turkey. The city is located at a hot-humid climatic region. In order to forecast the IT and internal relative humidity (IRH) parameters in the building, a number of artificial neural networks (ANN) models were trained and tested with a dataset including outdoor climatic conditions, day of year and indoor thermal comfort parameters. The indoor thermal comfort parameters, namely, IT and IRH values between 6 June and 21 September 2009 were collected via HOBO data logger. Fraction of variance (R2) and root-mean squared error values calculated by the use of the outputs of different ANN architectures were compared. Moreover, several multiple regression models were developed to question their performance in comparison with those of ANNs. The results showed that an ANN model trained with inconsiderable amount of data was successful in the prediction of IT and IRH parameters in education buildings. It should be emphasized that this model can be benefited in the prediction of indoor thermal comfort conditions, energy requirements, and heating, ventilating and air conditioning system size. © The Author(s), 2011. Reprints and permissions:en_US
dc.language.isoenen_US
dc.publisherSAGE Publications Inc.en_US
dc.relation.ispartofIndoor and Built Environmenten_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectArtificial neural networken_US
dc.subjectIndoor temperature and relative humidityen_US
dc.subjectModellingen_US
dc.subjectMultiple regressionen_US
dc.subjectEnvironmental temperatureen_US
dc.subjectEducation buildingen_US
dc.titleModels for prediction of daily mean indoor temperature and relative humidity: Education building in Izmir, Turkeyen_US
dc.typeArticleen_US
dc.authoridTR50305en_US
dc.institutionauthorYıldız, Yusuf-
dc.departmentİzmir Institute of Technology. Architectureen_US
dc.identifier.volume21en_US
dc.identifier.issue6en_US
dc.identifier.startpage772en_US
dc.identifier.endpage781en_US
dc.identifier.wosWOS:000311796000004en_US
dc.identifier.scopus2-s2.0-84857040178en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1177/1420326X11422163-
dc.relation.doi10.1177/1420326X11422163en_US
dc.coverage.doi10.1177/1420326X11422163en_US
dc.identifier.wosqualityQ2-
dc.identifier.scopusqualityQ1-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
Appears in Collections:Architecture / Mimarlık
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
5215.pdfMakale368.05 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

46
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

37
checked on Oct 5, 2024

Page view(s)

240
checked on Nov 18, 2024

Download(s)

540
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.