Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/5128
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Dehkharghani, Rahim | - |
dc.contributor.author | Yanıkoğlu, Berrin | - |
dc.contributor.author | Tapucu, Dilek | - |
dc.contributor.author | Saygın, Yücel | - |
dc.date.accessioned | 2017-03-23T07:45:42Z | - |
dc.date.available | 2017-03-23T07:45:42Z | - |
dc.date.issued | 2012 | - |
dc.identifier.citation | Dehkharghani, R., Yanıkoğlu, B., Tapucu, D., and Saygın, Y. (2012, December 10). Adaptation and use of subjectivity lexicons for domain dependent sentiment classification. Paper presented at the 12th IEEE International Conference on Data Mining Workshops, ICDMW 2012. doi:10.1109/ICDMW.2012.121 | en_US |
dc.identifier.isbn | 9780769549255 | - |
dc.identifier.uri | http://doi.org/10.1109/ICDMW.2012.121 | - |
dc.identifier.uri | http://hdl.handle.net/11147/5128 | - |
dc.description | 12th IEEE International Conference on Data Mining Workshops, ICDMW 2012; Brussels; Belgium; 10 December 2012 | en_US |
dc.description.abstract | Sentiment analysis refers to the automatic extraction of sentiments from a natural language text. We study the effect of subjectivity-based features on sentiment classification on two lexicons and also propose new subjectivity-based features for sentiment classification. The subjectivity-based features we experiment with are based on the average word polarity and the new features that we propose are based on the occurrence of subjective words in review texts. Experimental results on hotel and movie reviews show an overall accuracy of about 84% and 71% in hotel and movie review domains respectively; improving the baseline using just the average word polarities by about 2% points. © 2012 IEEE. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.relation.ispartof | 12th IEEE International Conference on Data Mining Workshops, ICDMW 2012 | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Lexicon based methods | en_US |
dc.subject | Machine learning | en_US |
dc.subject | Opinion mining | en_US |
dc.subject | Polarity extraction | en_US |
dc.subject | Sentiment analysis | en_US |
dc.title | Adaptation and use of subjectivity lexicons for domain dependent sentiment classification | en_US |
dc.type | Conference Object | en_US |
dc.institutionauthor | Tapucu, Dilek | - |
dc.department | İzmir Institute of Technology. Computer Engineering | en_US |
dc.identifier.startpage | 669 | en_US |
dc.identifier.endpage | 673 | en_US |
dc.identifier.wos | WOS:000320946500088 | en_US |
dc.identifier.scopus | 2-s2.0-84873130582 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.doi | 10.1109/ICDMW.2012.121 | - |
dc.relation.doi | 10.1109/ICDMW.2012.121 | en_US |
dc.coverage.doi | 10.1109/ICDMW.2012.121 | en_US |
dc.identifier.wosquality | N/A | - |
dc.identifier.scopusquality | N/A | - |
item.fulltext | With Fulltext | - |
item.grantfulltext | open | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.openairetype | Conference Object | - |
crisitem.author.dept | 03.04. Department of Computer Engineering | - |
Appears in Collections: | Computer Engineering / Bilgisayar Mühendisliği Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
24
checked on Nov 15, 2024
WEB OF SCIENCETM
Citations
18
checked on Oct 5, 2024
Page view(s)
252
checked on Nov 18, 2024
Download(s)
288
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.