Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/5119
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGezici, Gizem-
dc.contributor.authorYanıkoğlu, Berrin-
dc.contributor.authorTapucu, Dilek-
dc.contributor.authorSaygın, Yücel-
dc.date.accessioned2017-03-22T07:25:39Z-
dc.date.available2017-03-22T07:25:39Z-
dc.date.issued2012-
dc.identifier.citationGezici, G., Yanıkoğlu, B., Tapucu, D., and Saygın, Y. (2012, September). New features for sentiment analysis: Do sentences matter?. Paper presented at the Proceedings of the 1st International Workshop on Sentiment Discovery from Affective Data (SDAD 2012), Bristol, UK.en_US
dc.identifier.issn1613-0073-
dc.identifier.issn1613-0073-
dc.identifier.urihttp://hdl.handle.net/11147/5119-
dc.description1st International Workshop on Sentiment Discovery from Affective Data 2012, SDAD 2012 - In Conjunction with ECML-PKDD 2012; Bristol; United Kingdom; 28 September 2012 through 28 September 2012en_US
dc.description.abstractIn this work, we propose and evaluate new features to be used in a word polarity based approach to sentiment classification. In particular, we analyze sentences as the first step before estimating the overall review polarity. We consider different aspects of sentences, such as length, purity, irrealis content, subjectivity, and position within the opinionated text. This analysis is then used to find sentences that may convey better information about the overall review polarity. The TripAdvisor dataset is used to evaluate the effect of sentence level features on polarity classification. Our initial results indicate a small improvement in classification accuracy when using the newly proposed features. However, the benefit of these features is not limited to improving sentiment classification accuracy since sentence level features can be used for other important tasks such as review summarization.en_US
dc.description.sponsorshipEuropean Commission, FP7, under UBIPOL (Ubiquitous Participation Platform for Policy Making) Projecten_US
dc.language.isoenen_US
dc.publisherCEUR Workshop Proceedingsen_US
dc.relation.ispartof1st International Workshop on Sentiment Discovery from Affective Data, SDAD 2012en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMachine learningen_US
dc.subjectPolarity detectionen_US
dc.subjectSentiment analysisen_US
dc.subjectSentiment classificationen_US
dc.titleNew features for sentiment analysis: Do sentences matter?en_US
dc.typeConference Objecten_US
dc.institutionauthorTapucu, Dilek-
dc.departmentİzmir Institute of Technology. Computer Engineeringen_US
dc.identifier.volume917en_US
dc.identifier.startpage5en_US
dc.identifier.endpage15en_US
dc.identifier.scopus2-s2.0-84891767640en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.wosqualityN/A-
dc.identifier.scopusqualityQ4-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeConference Object-
crisitem.author.dept03.04. Department of Computer Engineering-
Appears in Collections:Computer Engineering / Bilgisayar Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
5119.pdfConference Paper145.95 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

18
checked on Nov 15, 2024

Page view(s)

438
checked on Nov 18, 2024

Download(s)

164
checked on Nov 18, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.