Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/5080
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÜnlütürk, Sevcan-
dc.contributor.authorÜnlütürk, Mehmet S.-
dc.contributor.authorPazır, Fikret-
dc.contributor.authorKuşçu, Alper-
dc.date.accessioned2017-03-17T08:57:04Z-
dc.date.available2017-03-17T08:57:04Z-
dc.date.issued2011-
dc.identifier.citationÜnlütürk, S., Ünlütürk, M. S., Pazır, F.,and Kuşçu, A. (2011). Process neural network method: Case study I: Discrimination of sweet red peppers prepared by different methods. Eurasip Journal on Advances in Signal Processing, 2011. doi:10.1155/2011/290950en_US
dc.identifier.issn1687-6172-
dc.identifier.urihttps://doi.org/10.1155/2011/290950-
dc.identifier.urihttp://hdl.handle.net/11147/5080-
dc.description.abstractThis study utilized a feed-forward neural network model along with computer vision techniques to discriminate sweet red pepper products prepared by different methods such as freezing and pureeing. The differences among the fresh, frozen and pureed samples are investigated by studying their bio-crystallogram images. The dissimilarity in visually analyzed bio-crystallogram images are defined as the distribution of crystals on the circular glass underlay and the thin or the thick structure of crystal needles. However, the visual description and definition of bio-crystallogram images has major disadvantages. A methodology called process neural network (ProcNN) has been studied to overcome these shortcomings.en_US
dc.language.isoenen_US
dc.publisherSpringer Verlagen_US
dc.relation.ispartofEurasip Journal on Advances in Signal Processingen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectComputer vision techniquesen_US
dc.subjectProcess neural networken_US
dc.subjectRed peppersen_US
dc.subjectNeural networksen_US
dc.subjectCrystal structureen_US
dc.titleProcess neural network method: Case study I: Discrimination of sweet red peppers prepared by different methodsen_US
dc.typeArticleen_US
dc.authoridTR44047en_US
dc.institutionauthorÜnlütürk, Sevcan-
dc.departmentİzmir Institute of Technology. Food Engineeringen_US
dc.identifier.volume2011en_US
dc.identifier.wosWOS:000290385300001en_US
dc.identifier.scopus2-s2.0-79955018842en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1155/2011/290950-
dc.relation.doi10.1155/2011/290950en_US
dc.coverage.doi10.1155/2011/290950en_US
dc.identifier.wosqualityN/A-
dc.identifier.scopusqualityQ3-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept03.08. Department of Food Engineering-
Appears in Collections:Food Engineering / Gıda Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
5080.pdfMakale7.19 MBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

1
checked on Oct 5, 2024

Page view(s)

4,798
checked on Nov 18, 2024

Download(s)

182
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.