Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/5080
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ünlütürk, Sevcan | - |
dc.contributor.author | Ünlütürk, Mehmet S. | - |
dc.contributor.author | Pazır, Fikret | - |
dc.contributor.author | Kuşçu, Alper | - |
dc.date.accessioned | 2017-03-17T08:57:04Z | - |
dc.date.available | 2017-03-17T08:57:04Z | - |
dc.date.issued | 2011 | - |
dc.identifier.citation | Ünlütürk, S., Ünlütürk, M. S., Pazır, F.,and Kuşçu, A. (2011). Process neural network method: Case study I: Discrimination of sweet red peppers prepared by different methods. Eurasip Journal on Advances in Signal Processing, 2011. doi:10.1155/2011/290950 | en_US |
dc.identifier.issn | 1687-6172 | - |
dc.identifier.uri | https://doi.org/10.1155/2011/290950 | - |
dc.identifier.uri | http://hdl.handle.net/11147/5080 | - |
dc.description.abstract | This study utilized a feed-forward neural network model along with computer vision techniques to discriminate sweet red pepper products prepared by different methods such as freezing and pureeing. The differences among the fresh, frozen and pureed samples are investigated by studying their bio-crystallogram images. The dissimilarity in visually analyzed bio-crystallogram images are defined as the distribution of crystals on the circular glass underlay and the thin or the thick structure of crystal needles. However, the visual description and definition of bio-crystallogram images has major disadvantages. A methodology called process neural network (ProcNN) has been studied to overcome these shortcomings. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer Verlag | en_US |
dc.relation.ispartof | Eurasip Journal on Advances in Signal Processing | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Computer vision techniques | en_US |
dc.subject | Process neural network | en_US |
dc.subject | Red peppers | en_US |
dc.subject | Neural networks | en_US |
dc.subject | Crystal structure | en_US |
dc.title | Process neural network method: Case study I: Discrimination of sweet red peppers prepared by different methods | en_US |
dc.type | Article | en_US |
dc.authorid | TR44047 | en_US |
dc.institutionauthor | Ünlütürk, Sevcan | - |
dc.department | İzmir Institute of Technology. Food Engineering | en_US |
dc.identifier.volume | 2011 | en_US |
dc.identifier.wos | WOS:000290385300001 | en_US |
dc.identifier.scopus | 2-s2.0-79955018842 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.doi | 10.1155/2011/290950 | - |
dc.relation.doi | 10.1155/2011/290950 | en_US |
dc.coverage.doi | 10.1155/2011/290950 | en_US |
dc.identifier.wosquality | N/A | - |
dc.identifier.scopusquality | Q3 | - |
item.fulltext | With Fulltext | - |
item.grantfulltext | open | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
crisitem.author.dept | 03.08. Department of Food Engineering | - |
Appears in Collections: | Food Engineering / Gıda Mühendisliği Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
2
checked on Nov 15, 2024
WEB OF SCIENCETM
Citations
1
checked on Oct 5, 2024
Page view(s)
4,798
checked on Nov 18, 2024
Download(s)
182
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.