Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/4908
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGeçer Sargın, Feral-
dc.contributor.authorGeçer Sargın, Feral-
dc.contributor.authorDuvarcı, Yavuz-
dc.contributor.authorDuvarcı, Yavuz-
dc.contributor.authorİnan, E.-
dc.contributor.authorİnan, E.-
dc.contributor.authorKumova, Bora İsmail-
dc.contributor.authorKumova, Bora İsmail-
dc.contributor.authorAtay Kaya, İlgi-
dc.contributor.authorAtay Kaya, İlgi-
dc.date.accessioned2017-02-24T13:46:32Z-
dc.date.available2017-02-24T13:46:32Z-
dc.date.issued2011-
dc.identifier.citationGeçer Sargın, F., Duvarcı, Y., İnan, E., Kumova, B. İ., and Atay Kaya, İ. (2011). A data coding and screening system for accident risk patterns: A learning system. WIT Transactions on the Built Environment, 116, 505-516. doi:10.2495/UT110431en_US
dc.identifier.isbn9781845645205-
dc.identifier.issn1743-3509-
dc.identifier.urihttp://doi.org/10.2495/UT110431-
dc.identifier.urihttp://hdl.handle.net/11147/4908-
dc.description17th International Conference on Urban Transport and the Environment - UT 2011; Pisa; Italy; 6 June 2011 through 8 June 2011en_US
dc.description.abstractAccidents on urban roads can occur for many reasons, and the contributing factors together pose some complexity in the analysis of the casualties. In order to simplify the analysis and track changes from one accident to another for comparability, an authentic data coding and category analysis methods are developed, leading to data mining rules. To deal with a huge number of parameters, first, most qualitative data are converted into categorical codes (alpha-numeric), so that computing capacity would also be increased. Second, the whole data entry per accident are turned into ID codes, meaning each crash is possibly unique in attributes, called 'accident combination', reducing the large number of similar value accident records into smaller sets of data. This genetical code technique allows us to learn accident types with its solid attributes. The learning (output averages) provides a decision support mechanism for taking necessary cautions for similar combinations. The results can be analyzed by inputs, outputs (attributes), time (years) and the space (streets). According to Izmir's case results; sampled data and its accident combinations are obtained for 3 years (2005 - 2007) and their attributes are learned. © 2011 WIT Press.en_US
dc.description.sponsorshipThe Scientific and Technological Research Council of Turkeyen_US
dc.language.isoenen_US
dc.publisherWITPressen_US
dc.relation.ispartofWIT Transactions on the Built Environmenten_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectTraffic accidentsen_US
dc.subjectLearning systemsen_US
dc.subjectData miningen_US
dc.subjectSimilarity indexen_US
dc.titleA data coding and screening system for accident risk patterns: A learning systemen_US
dc.typeConference Objecten_US
dc.institutionauthorGeçer Sargın, Feral-
dc.institutionauthorDuvarcı, Yavuz-
dc.institutionauthorKumova, Bora İsmail-
dc.institutionauthorAtay Kaya, İlgi-
dc.departmentİzmir Institute of Technology. City and Regional Planningen_US
dc.departmentİzmir Institute of Technology. Computer Engineeringen_US
dc.identifier.volume116en_US
dc.identifier.startpage505en_US
dc.identifier.endpage516en_US
dc.identifier.scopus2-s2.0-84875017141en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.2495/UT110431-
dc.relation.doi10.2495/UT110431en_US
dc.coverage.doi10.2495/UT110431en_US
local.message.claim2022-06-03T09:59:53.878+0300*
local.message.claim|rp02905*
local.message.claim|submit_approve*
local.message.claim|dc_contributor_author*
local.message.claim|None*
local.message.claim2023-06-19T16:32:47.133+0300*
local.message.claim|rp04982*
local.message.claim|submit_approve*
local.message.claim|dc_contributor_author*
local.message.claim|None*
local.message.claim2023-06-19T16:32:40.551+0300*
local.message.claim|rp04982*
local.message.claim|submit_approve*
local.message.claim|dc_contributor_author*
local.message.claim|None*
dc.identifier.wosqualityN/A-
dc.identifier.scopusqualityQ4-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeConference Object-
crisitem.author.dept02.03. Department of City and Regional Planning-
crisitem.author.dept02.03. Department of City and Regional Planning-
crisitem.author.dept02.03. Department of City and Regional Planning-
crisitem.author.dept02.03. Department of City and Regional Planning-
crisitem.author.dept03.04. Department of Computer Engineering-
crisitem.author.dept03.04. Department of Computer Engineering-
crisitem.author.dept03.04. Department of Computer Engineering-
crisitem.author.dept03.04. Department of Computer Engineering-
Appears in Collections:City and Regional Planning / Şehir ve Bölge Planlama
Computer Engineering / Bilgisayar Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
4908.pdfConference Paper3.51 MBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

Page view(s)

972
checked on Nov 18, 2024

Download(s)

214
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.