Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/4807
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFiliz, Ali-
dc.contributor.authorNeslitürk, Ali-
dc.contributor.authorŞendur, Ali-
dc.date.accessioned2017-02-08T07:43:07Z-
dc.date.available2017-02-08T07:43:07Z-
dc.date.issued2012-01-
dc.identifier.citationFiliz, A., Neslitürk, A., and Şendur, A. (2012). A fully discrete ε-uniform method for singular perturbation problems on equidistant meshes. International Journal of Computer Mathematics, 89(2), 190-199. doi:10.1080/00207160.2011.632411en_US
dc.identifier.issn0020-7160-
dc.identifier.urihttp://doi.org/10.1080/00207160.2011.632411-
dc.identifier.urihttp://hdl.handle.net/11147/4807-
dc.description.abstractWe propose a fully discrete ε-uniform finite-difference method on an equidistant mesh for a singularly perturbed two-point boundary-value problem (BVP). We start with a fitted operator method reflecting the singular perturbation nature of the problem through a local BVP. However, to solve the local BVP, we employ an upwind method on a Shishkin mesh in local domain, instead of solving it exactly. Thus, we show that it is possible to develop a ε-uniform method, totally in the context of finite differences, without solving any differential equation exactly. We further study the convergence properties of the numerical method proposed and prove that it nodally converges to the true solution for any ε. Finally, a set of numerical experiments is carried out to validate the theoretical results computationally. © 2012 Copyright Taylor and Francis Group, LLCen_US
dc.language.isoenen_US
dc.publisherTaylor and Francis Ltd.en_US
dc.relation.ispartofInternational Journal of Computer Mathematicsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectFinite differencesen_US
dc.subjectFitted operator methoden_US
dc.subjectShishkin meshen_US
dc.subjectSingular perturbationen_US
dc.subjectUniform convergenceen_US
dc.titleA fully discrete ?-uniform method for singular perturbation problems on equidistant meshesen_US
dc.typeArticleen_US
dc.institutionauthorNeslitürk, Ali-
dc.institutionauthorŞendur, Ali-
dc.departmentİzmir Institute of Technology. Mathematicsen_US
dc.identifier.volume89en_US
dc.identifier.issue2en_US
dc.identifier.startpage190en_US
dc.identifier.endpage199en_US
dc.identifier.wosWOS:000298350400005en_US
dc.identifier.scopus2-s2.0-84857299734en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1080/00207160.2011.632411-
dc.relation.doi10.1080/00207160.2011.632411en_US
dc.coverage.doi10.1080/00207160.2011.632411en_US
dc.identifier.wosqualityQ2-
dc.identifier.scopusqualityQ3-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextopen-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.openairetypeArticle-
item.languageiso639-1en-
crisitem.author.dept04.02. Department of Mathematics-
Appears in Collections:Mathematics / Matematik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
4807.pdfMakale308.78 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 23, 2024

WEB OF SCIENCETM
Citations

1
checked on Oct 26, 2024

Page view(s)

192
checked on Nov 18, 2024

Download(s)

266
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.