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We propose a fully discrete ε-uniform finite-difference method on an equidistant mesh for a singularly
perturbed two-point boundary-value problem (BVP). We start with a fitted operator method reflecting the
singular perturbation nature of the problem through a local BVP. However, to solve the local BVP, we
employ an upwind method on a Shishkin mesh in local domain, instead of solving it exactly. Thus, we
show that it is possible to develop a ε-uniform method, totally in the context of finite differences, without
solving any differential equation exactly. We further study the convergence properties of the numerical
method proposed and prove that it nodally converges to the true solution for any ε. Finally, a set of numerical
experiments is carried out to validate the theoretical results computationally.

Keywords: finite differences; uniform convergence; singular perturbation; fitted operator method;
Shishkin mesh

2010 AMS Subject Classifications: 65L10; 65L11; 65L12

1. Introduction

It is well known that the classical finite-difference methods for the approximation of singu-
larly perturbed boundary-value problems (BVPs) do not work in the critical range of ε where
ε is considerably small compared with the mesh parameter h. Although the centred difference
approximation produces good approximations for large values of ε, the result is totally unphysical
as ε → 0. These deficiencies disappear if we discretize the convection term by an appropriate
one-sided finite-difference operator, in which case the resulting numerical method is known as
the upwind method. However, the approximate solution may not uniformly converge to the true
solution in the layer region where the useful information is confined. Therefore, it is important
to devise uniformly convergent methods that yield the numerical approximations consistent with
the physical configuration of the problem in all regimes.
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A considerable amount of research works have been devoted to the development of the uni-
formly convergent methods. In the construction of ε-uniform finite-difference methods, two major
approaches have generally been taken to date. The first of these involves replacing the standard
finite-difference operator by a difference operator which reflects the singularly perturbed nature
of the differential operator. Such numerical methods are referred to, in general, as fitted operator
finite-difference methods [4,5]. Typical derivation of such methods based on the discretization
of the domain into a set of equidistant subintervals and the exact solution of a local BVP with
an irregular data on a pair of adjacent subintervals. It is appreciated that the method uses an
equidistant mesh but the overall method suffers from the fact that it depends on the exact solution
which is not easier to solve than the original problem.

The second major approach in the construction of the ε-uniform finite-difference method
involves the use of a fitted mesh; a mesh that is adapted according to the singular perturbation
[4,5]. Let us concentrate on the most efficient subclass of the fitted meshes methods: Shishkin
mesh [6]. A Shishkin mesh, also called a piecewise uniform fitted mesh, consists of a union of
finite number of uniform meshes having different mesh parameters on both sides of a transition
point. It turns out that a Shishkin mesh together with the simple upwind method is sufficient for
the construction of an ε-uniform method [7]. These meshes can also be applied to singular pertur-
bation problems with interior layers caused by point sources [3]. The simplicity of Shishkin mesh
is due to the use of equidistant subintervals on both sides of a transition point and this property is
considered to be one of its major attractions. However, it requires the precise location of the layer
structure a priori.

The algorithm investigated in this work combines these two major classes of ε-uniform finite-
difference methods. We start with a fitted operator method reflecting the singular perturbation
nature of the problem through a local BVP posed on an adjacent pair of subintervals. However,
the local BVP has an interior layer caused by a concentrated source and instead of solving it
exactly, we approximate it with the upwind method on a Shishkin-like mesh on the patch of these
subintervals. The distribution of the mesh points in the subdomain is determined depending on
the local flow regime. Further, we prove that the resulting numerical method nodally converges
to the true solution for any ε. Thus, we display that it is possible to develop an ε-uniform finite-
difference method on equidistant meshes without solving the local differential equation exactly.
This fact is also confirmed by numerical experiments presented below.

The layout of the paper is as follows. We present the numerical method proposed in Section 2
and investigate its convergence properties in Section 3. Therein, we also prove that the new
algorithm nodally converges to the true solution uniformly. Finally, we perform the numerical
tests in Section 4.

2. Numerical method

Consider the following singularly perturbed BVP on the unit interval � = (0, 1)

Find u(x) such that u(0) = u0, u(1) = u1 and

Lu = −εu′′ + b(x)u′ + c(x)u = f (x) ∀x ∈ �
(1)

under the assumptions that 0 < ε ≤ 1, b(x) ≥ b0 > 0 and c(x) ≥ 0, where u0 and u1 are given
constants. Define a uniform mesh {xi}N

i=0, where xi = ih, i = 0, 1, . . . , N and h = 1/N , denoted
by �N , the space of all mesh functions defined on �N by V(�N ) and the discrete maximum norm
for any mesh function V by ‖ V ‖�N = max0≤i≤N |Vi|. We set bi = b(xi), ci = c(xi) and fi = f (xi)

throughout the paper. Let us try to solve the problem (1) by an ε-uniform difference method of
fitted operator type [4,5] on the uniform mesh �N . Typical derivation of the fitted operator methods
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Xi-1 X +i-1 τ Xi X + τi Xi+1

Figure 1. Subdomains of �i ∪ �i+1.

is based on the exact solution of a local BVP reflecting the singular nature of the problem. The
explicit statement of the local problem reads: Find the local function gi, defined with respect to
the mesh point xi, on �i ∪ �i+1 such that

M∗gi = −εg′′
i (x) − bi g′

i(x) = δxi(x) ∀x ∈ �i ∪ �i+1,

gi(xi−1) = 0,

gi(xi+1) = 0,

(2)

where �i = (xi−1, xi). Equation (2) should be read in the sense of distributions. Multiplying the
equation Lu = f with gi, integrating the resulting expression from xi−1 to xi+1 and using the
integration by parts and the continuity of u, respectively, we get the following identity:

−εg′
i(xi−1)Ui−1 + Ui + εg′

i(xi+1)Ui+1 = (fi − ciUi)

∫ xi+1

xi−1

gi dx. (3)

However, the evaluation of g′
i(xi−1) and g′

i(xi+1) requires the exact solution of Equation (2)
which may be difficult as much as the original problem (1). Therefore, we approximate the
local Green function gi by a fitted mesh method of Shishkin type [4,5,7] and then use the resulting
approximations in place of gi’s in Equation (3).

In that context, we formulate a fitted mesh method of Shishkin type on the union of �i and
�i+1: divide �i ∪ �i+1 into the four subintervals [xi−1, xi−1 + τ ], [xi−1 + τ , xi], [xi, xi + τ ] and
[xi + τ , xi+1] (Figure 1) each has M/4 mesh elements, where τ = min{h/2, ε/bi ln M}. The cor-
responding mesh parameters becomes h∗

1 = 4τ/M and h∗
2 = (4/M)(h − τ). Thus, the Shishkin

fitted mesh �
M/2
i,τ ∪ �

M/2
i+1,τ = {x∗

j }M
j=0 is defined by

x∗
0 = xi−1 and x∗

j − x∗
j−1 =

⎧⎪⎨
⎪⎩

h∗
1 0 < j ≤ M

4
or

M

2
< j ≤ 3M

4
,

h∗
2

M

4
< j ≤ M

2
or

3M

4
< j ≤ M.

(4)

The discrete problem for Equation (2), using the upwind difference operator on the specified mesh
(4), is given by

Find G ∈ V(�
M/2
i,τ ∪ �

M/2
i+1,τ ) such that G0 = 0, GM = 0 and

− εD+
∗ D−

∗ Gj − biD
+
∗ Gj = �xi ,j, 1 ≤ j ≤ M − 1,

(5)

where we mean Gi
j by Gj with Gj ≈ gi(x∗

j ), and

D+
∗ vj = vj+1 − vj

h∗
j+1

, D−
∗ vj = vj − vj−1

h∗
j

and �xi ,j =

⎧⎪⎨
⎪⎩

1

h∗
j+1

xi ∈ [x∗
j , x∗

j+1),

0 otherwise.

To solve Equation (5), we start with combining terms with the same indices together and obtain
a three-point difference scheme:

(−λ∗
j )Gj+1 +

(
h∗

j+1

h∗
j

+ λ∗
j

)
Gj +

(
−h∗

j+1

h∗
j

)
Gj−1 = �xi ,j, j = 1, 2, . . . , M − 1, (6)
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where λ∗
j is defined by

λ∗
j =

⎧⎪⎨
⎪⎩

λ1 1 ≤ j ≤ M

4
or

M

2
< j ≤ 3M

4
,

λ2
M

4
< j ≤ M

2
or

3M

4
< j ≤ M − 1,

with λ1 = 1 + bih∗
1

ε
, λ2 = 1 + bih∗

2

ε
.

At the interior points of the subintervals, the difference equation (6) takes the simple form

(−λ∗
j )Gj+1 + (1 + λ∗

j )Gj + (−1)Gj−1 = 0 (7)

for which, the roots of the characteristic polynomial are r1 = 1 and r2 = 1/λ∗
j . Therefore, we may

assume that the solution of the difference equation (5) is of the form

Gi
j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 + a2λ
−j
1 if 0 ≤ j ≤ M

4
,

a3 + a4λ
−j
2 if

M

4
≤ j ≤ M

2
,

a5 + a6λ
−j
1 if

M

2
≤ j ≤ 3M

4
,

a7 + a8λ
−j
2 if

3M

4
≤ j ≤ M.

(8)

Now, we need to determine the coefficients ak , k = 1, . . . , 8, in order to obtain the solution of
the difference equation explicitly. The boundary conditions G0 = GM = 0 give us two equations.
Three equations come from the difference equations (6) written at the transition points x∗

M/4, x∗
M/2

and x∗
3M/4, respectively. The other three equations are obtained by imposing the continuity of the

difference solutions at transition points

a1 + a2λ
−M/4
1 = a3 + a4λ

−M/4
2 ,

a3 + a4λ
−M/2
2 = a5 + a6λ

−M/2
1 ,

a5 + a6λ
−3M/4
1 = a7 + a8λ

−3M/4
2 .

Once we solve these eight equations for ai, i = 1, . . . , 8, we substitute them into Equation (8) to
get the solution of the difference equation (5) in an explicit manner

Gi
j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h∗
2

η
κ1κ2κ3(1 − λ

−j
1 ) if 0 ≤ j ≤ M

4
,

h∗
2

η
(κ1κ2κ3 + κ2 − κ2κ3 − λ

−j+M/2
2 ) if

M

4
< j ≤ M

2
,

h∗
2

η
(λ2κ2 − λ1κ2 − λ2 + κ2κ3λ

−j+3M/4
1 ) if

M

2
< j ≤ 3M

4
,

h∗
2

η
(−1 + λ

−j+M
2 ) if

3M

4
< j ≤ M,

(9)

where κ1 = λ
M/4
1 , κ2 = λ

M/4
2 , κ3 = λ1λ

−1
2 and η = ε(λ1 − 1)(1 + λ

M/4
1 λ

M/4
2 ). Now, we replace

g′
i(xi−1) and g′

i(xi+1) in Equation (3) by using the discrete Green function Gi in their one-sided
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approximations, that is

g′
i(xi−1) ≈ D+G0 = G1 − G0

h∗
1

, g′
i(xi+1) ≈ D−GM = GM − GM−1

h∗
2

,

which yields the ultimate numerical method that

−εD+G0Ũi−1 + Ũi + εD−GMŨi+1 = (fi − ciŨi)

∫ xi+1

xi−1

Gi dx. (10)

The method (10) is remarkable in the sense that it requires no exact solution of Equation (2) at all.
In the implementation stage, we may directly use the values of the approximate Green function
Gi from Equation (5). Thus, from the implementation point of view, we do not even need to find
the explicit expressions for Gi in Equation (9), as they are only needed to prove that the method
(10) is ε-uniform convergent in Section 3.

3. Convergence properties

To investigate the convergence properties of the numerical method (10), we should recall some
known results that are needed to prove that the method under consideration converges uniformly
in ε. Let us first recall the exact scheme (also known as Il’in–Allen–Southwell method) obtained
by the fitted operator method for the problem (1) in the upwind form [2,5]:

Find U ∈ V(�N ) such that U0 = u0, UN = u1 and

− εB(ρi)D
+D−Ui + biD

−Ui + ciUi = fi, 1 ≤ i ≤ N − 1,
(11)

where B(ρi) = ρi/(eρi − 1) is Bernoulli’s function. On the other hand, let us rewrite the numerical
method (10) in the upwind form of

−εσiD
+D−Ũi + ηibiD

−Ũi + θiciŨi = fi, (12)

where

σi = h2

ε

T2

T3
, ηi = h2

ερi

T1 − T2

T3
, θi = 1

c

1 + cT3 − T1 − T2

T3
(13)

and

T1(ε, bi, h, M) = εD+G0, T2(ε, bi, h, M) = −εD−GM , T3(ε, bi, h, M) =
∫ xi+1

xi−1

Gi dx. (14)

It is well known that the schemes of upwind type whose coefficients are close to the coefficients of
the method (11) are also uniformly convergent [1]. We will use this fact to show that the method
(10) is uniformly convergent, by proving that the coefficients σi, ηi and θi in Equation (12) can be
made arbitrarily close to the coefficients of the exact scheme (11). Thus, we need to prove that

lim
M→∞ σi(ε, bi, h, M) = B(ρi), (15)

lim
M→∞ ηi(ε, bi, h, M) = 1, (16)

lim
M→∞ θi(ε, bi, h, M) = 1. (17)

Since Gi is a strictly positive function, so does the number T3. Therefore, we can first evaluate
limM→∞ Ti for i = 1, 2, 3 in Equation (14), and then use the relations in Equation (13) to find the
limits (15)–(17).
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Lemma 3.1 Let T1(ε, bi, h, M) be given as in Equation (14), that is, T1(ε, bi, h, M) =
ε(G1 − G0)/h∗

1. If ρi = bih/ε is fixed, then we have

lim
M→∞ T1(ε, bi, h, M) = eρi

1 + eρi
. (18)

Proof Set ρ = ρi and b = bi. We need to consider two cases with respect to the transition
parameter τ . In the first case, where τ = h/2, the mesh is uniform with h∗

1 = h∗
2 = 2h/M and

λ1 = λ2 = 1 + 2bh/(Mε). Using these parameter values, we rewrite T1 by rearranging the terms
and using the explicit solution of Gi in Equation (9)

G1 − G0

h∗
1

= 1

h∗
1

h∗
2

ε

λ
M/4+1
1 λ

M/4−1
2 (1 − λ−1

1 )

(λ1 − 1)(1 + λ
M/4
1 λ

M/4
2 )

= 1

ε

λ
M/4
1 λ

M/4
2

λ2(1 + λ
M/4
1 λ

M/4
2 )

= 1

ε

(1 + 2bh/(Mε))M/4(1 + 2bh/(Mε))M/4

(1 + 2bh/(Mε))[1 + (1 + 2bh/(Mε))M/4(1 + 2bh/(Mε))M/4]

= 1

ε

(1 + 2ρ/M)M/2

(1 + 2ρ/M)[1 + (1 + 2ρ/M)M/2] .

Using the fact that limM→∞(1 + x/M)M = ex for any x ∈ R, the last expression immediately
leads to

lim
M→∞

G1 − G0

h∗
1

= 1

ε

eρ

1 + eρ
.

In the second case, where τ = ε/b ln M, the mesh is piecewise uniform with the mesh
parameters h∗

1 = (4/M)(ε/b) ln M/2 and h∗
2 = (4/M)(h − ε/b ln M/2), in which case, λ1 =

1 + 4/M ln M/2 and λ2 = 1 + (4ρ/M) − 4/M ln M/2. Now,

G1 − G0

h∗
1

= 1

ε

h∗
2

h∗
1

λ
M/4
1 λ

M/4
2

λ2(1 + λ
M/4
1 λ

M/4
2 )

= 1

ε

h∗
2

h∗
1

(1 + bh1/ε)
M/4(1 + bh2/ε)

M/4

(1 + bh2/ε)[1 + (1 + bh1/ε)M/4(1 + bh2/ε)M/4]

= 1

ε

(
ρ

ln M/2
− 1

)
(1 + (4ρ/M) − 16 ln M/2/M2(ln M/2 − ρ))M/4

(1 + (4ρ/M) − 4 ln M/M)(1 + (1 + (4ρ/M)

−16 ln M/2/M2(ln M/2 − ρ))M/4)

.

Taking again the limit of the last expression as M → ∞ gives us the desired result

lim
M→∞

G1 − G0

h∗
1

= 1

ε

eρ

1 + eρ
. �

Lemma 3.2 Let T2(ε, bi, h, M) be given as in Equation (14), that is, T2(ε, bi, h, M) =
−ε(GM − GM−1)/h∗

2. If ρi = bih/ε is fixed, then we have

lim
M→∞ T2(ε, bi, h, M) = 1

1 + eρi
. (19)
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Proof We use the difference solution Gi in Equation (9) and the same arguments employed
in the proof of Lemma 3.1. Set ρ = ρi and b = bi. In the uniform case where τ = h/2, with
h∗

1 = h∗
2 = 2h/M and we have

GM − GM−1

h∗
2

= −1

ε

h∗
2

h∗
1

1

(1 + λ
M/4
1 λ

M/4
2 )

= −1

ε

1

[1 + (1 + 2ρ

M )M/2]
which immediately yields

lim
M→∞

GM − GM−1

h∗
2

= −1

ε

1

1 + eρ
.

For the other case where τ = ε/b ln M, a calculation shows that

GM − GM−1

h∗
2

= −1

ε

h∗
2

h∗
1

1

(1 + λ
M/4
1 λ

M/4
2 )

= 1

ε

(ρ/ln M/2) − 1

1 + (1 + (4 ln M/2)/M)M/4(1 + (4ρ/M)

−(4 ln M/2)/M)M/4

from which we easily get

lim
M→∞

GM − GM−1

h∗
2

= −1

ε

1

1 + eρ
. �

Lemma 3.3 Let T3(ε, bi, h, M) be given as in Equation (14), that is,

T3(ε, bi, h, M) =
∫ xi+1

xi−1

Gi dx. (20)

If ρi = bih/ε is fixed, then we have

lim
M→∞ T3(ε, bi, h, M) = h

bi

eρi − 1

eρi + 1
. (21)

Proof We give the proof for the uniform case only. For the non-uniform case, the steps are longer
but similar, so we omit it. Let us use the explicit solution of Gi in Equation (9) and the composite
trapezium quadrature rule to evaluate Equation (20):∫ xi+1

xi−1

Gi dx =
(

1

(b2κ4(1 + κ5(εM/κ4)−M/4)τ )
(κ

−3M/4
6 (εM)−1−M/4(h − τ)(−ε3M2(κ

M/4
4 κ5

× (κ
3M/4
6 + κ2

5 (εM)3M/4) − κ5(κ
M/2
6 (εκ4M)M/4 + κ2

5 (ε2κ4κ6M2)M/4))

+ 16b3κ
3M/4
6 (h − τ)τ (κ

M/4
4 (h − 2τ) + (εM)M/4(−h + τ))

+ bε2M(−hκ
3M/4
6 M(εM)M/4 + 8κ5κ

M/2
6 (εκ4M)M/4τ + 4κ3

5 (ε2κ4κ6M2)M/4τ

+ κ
M/4
4 κ5(κ

3M/4
6 (hM − 4τ) − 8κ2

5 (εM)3M/4τ)) + 4b2ε(−4κ
M/4
4 κ3

5 (εM)3M/4τ 2

+ 4κ5κ
M/2
6 (εκ4M)M/4τ 2 + κ

3M/4
6 (hκ

M/4
4 M

× (h + (−2 + κ5)τ ) + M(εM)M/4(−h2 + τ 2))))))

)
, (22)

where κ4 = εM + 4bh − 4bτ , κ5 = (1 + 4bτ/(εM))M/4 and κ6 = εM + 4bτ . In the uniform
case, τ = h/2 and thus the expression (22) considerably simplifies to the following expression:∫ xi+1

xi−1

Gi dx =
(

h(−bh + εM(−1 + (1 + 2ρ/M)M/2))

bε(1 + (1 + 2ρ/M)M/2)M

)
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from which we get the desired result

lim
M→∞

∫ xi+1

xi−1

Gi dx = h

b

eρ − 1

eρ + 1
. (23)

�

Corollary 3.4 If ρi = bih/ε is fixed, then the coefficients σi, ηi and θi in Equation (12) converge
to the coefficients of the numerical method (11). That is,

lim
M→∞ σi(ε, bi, h, M) = B(ρi), (24)

lim
M→∞ ηi(ε, bi, h, M) = 1, (25)

lim
M→∞ θi(ε, bi, h, M) = 1. (26)

Proof Recall the definition of σi from Equation (13), and use Lemmas 3.2 and 3.3, to get

lim
M→∞ σi = lim

M→∞
h2

ε

T2

T3
= h2

ε

limM→∞ T2

limM→∞ T3
= h2

ε

1/(eρi + 1)

(h/b)((eρi − 1)/(eρi + 1))

= ρi
1

eρi − 1
= B(ρi).

The proofs of Equations (25) and (26) are similar but also use Lemma 3.1. �

Theorem 3.5 The solution of the difference equation (12) converges, in the discrete maximum
norm, to the exact solution of the problem (1) uniformly in ε.

Proof This is a direct consequence of Corollary 3.4, together with Theorem 2 from Farrell [1].
�

4. Computational results and discussion

To examine the performance of the method, we carry out some numerical experiments. We first
consider the following test problem:

−εu′′ + u′ = 2x in (0, 1) with u(0) = u(1) = 0. (27)

We recall that the Green function associated with each global node is approximated on a Shishkin
mesh in a pair of subintervals and the number of nodes used in those subintervals is denoted
by M. Further recall that the number of nodes used in the global mesh is represented by N .
We test the numerical method for several values of N , M and ε. We take ε = 1, ε = 10−2 and
ε = 10−6, respectively, and for each of these ε values, we run the scheme for N = 2n, 4 ≤ n ≤ 15
and M = 2m, 4 ≤ m ≤ 8. We compute the error in the discrete maximum norm and compare the
results with the exact scheme (11) (Tables 1–3). It is obvious that the numerical approximations
obtained through the present method converge to the one obtained through the exact scheme as
both local and global mesh sizes are refined.

Although the theory was not developed for internal layers, the method has the potential to catch
them. We consider the following test problem to display that

−εu′′ − 2(2x − 1)u′ = 4(2x − 1) in (0, 1) with u(0) = u(1) = 0. (28)

This problem has an internal layer at x = 0.5. We report the corresponding numerical result in
Table 4.
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Table 1. The error in discrete maximum norm for increasing values of N and M (ε = 1).

Number of local mesh points (M)

N ↓ 16 32 64 128 256 Il’in

24 1.2122e − 004 9.9112e − 005 8.9119e − 005 8.4424e − 005 8.2073e − 005 8.0122e − 005
25 4.2366e − 005 3.0481e − 005 2.4882e − 005 2.2311e − 005 2.1122e − 005 2.0060e − 005
26 1.6759e − 005 1.0623e − 005 7.6372e − 006 6.2271e − 006 5.5802e − 006 5.0165e − 006
27 7.2976e − 006 4.1943e − 006 2.6575e − 006 1.9099e − 006 1.5572e − 006 1.2543e − 006
28 3.3832e − 006 1.8255e − 006 1.0489e − 006 6.6450e − 007 4.7752e − 007 3.1357e − 007
29 1.6258e − 006 8.4602e − 007 4.5645e − 007 2.6225e − 007 1.6613e − 007 7.8393e − 008
210 7.9651e − 007 4.0649e − 007 2.1152e − 007 1.1411e − 007 6.5563e − 008 1.9599e − 008
211 3.9417e − 007 1.9913e − 007 1.0163e − 007 5.2884e − 008 2.8522e − 008 4.9020e − 009
212 1.9609e − 007 9.8541e − 008 4.9814e − 008 2.5376e − 008 1.3198e − 008 1.2191e − 009
213 9.7669e − 008 4.8885e − 008 2.4662e − 008 1.2467e − 008 6.3709e − 009 3.5890e − 010
214 4.8865e − 008 2.4206e − 008 1.2010e − 008 6.2972e − 009 3.2516e − 009 2.8985e − 010
215 2.5499e − 008 1.2208e − 008 5.7307e − 009 1.5420e − 009 1.4740e − 011 1.3413e − 011

Table 2. The error in discrete maximum norm for increasing values of N and M (ε = 10−2).

Number of local mesh points (M)

N ↓ 16 32 64 128 256 Il’in

24 5.2901e − 002 4.3039e − 002 4.1271e − 002 4.0581e − 002 4.0273e − 002 3.9988e − 002
25 6.3343e − 002 3.7863e − 002 2.5403e − 002 1.9269e − 002 1.6231e − 002 1.3212e − 002
26 6.3108e − 002 3.3637e − 002 1.8713e − 002 1.1202e − 002 7.4354e − 003 3.6931e − 003
27 4.0253e − 002 2.0741e − 002 1.0883e − 002 5.9254e − 003 3.4391e − 003 9.5057e − 004
28 2.1571e − 002 1.0950e − 002 5.6057e − 003 2.9248e − 003 1.5822e − 003 2.3944e − 004
29 1.0976e − 002 5.5300e − 003 2.7980e − 003 1.4296e − 003 7.4486e − 004 5.9974e − 005
210 5.5115e − 003 2.7663e − 003 1.3914e − 003 7.0335e − 004 3.5919e − 004 1.5001e − 005
211 2.7584e − 003 1.3819e − 003 6.9299e − 004 3.4841e − 004 1.7608e − 004 3.7508e − 006
212 1.3795e − 003 6.9039e − 004 3.4571e − 004 1.7334e − 004 8.7137e − 005 9.3772e − 007
213 6.8975e − 004 3.4504e − 004 1.7265e − 004 8.6444e − 005 4.3339e − 005 2.3442e − 007
214 3.4487e − 004 1.7248e − 004 8.6270e − 005 4.3165e − 005 2.1612e − 005 5.8556e − 008
215 1.7243e − 004 8.6227e − 005 4.3121e − 005 2.1568e − 005 1.0791e − 005 1.3648e − 008

Table 3. The error in discrete maximum norm for increasing values of N and M (ε = 10−6).

Number of local mesh points (M)

N ↓ 16 32 64 128 256 Il’in

24 5.8592e − 002 5.8592e − 002 5.8592e − 002 5.8592e − 002 5.8592e − 002 5.8592e − 002
25 3.0272e − 002 3.0272e − 002 3.0272e − 002 3.0272e − 002 3.0272e − 002 3.0272e − 002
26 1.5379e − 002 1.5379e − 002 1.5379e − 002 1.5379e − 002 1.5379e − 002 1.5379e − 002
27 7.7495e − 003 7.7495e − 003 7.7495e − 003 7.7495e − 003 7.7495e − 003 7.7495e − 003
28 3.8890e − 003 3.8890e − 003 3.8890e − 003 3.8890e − 003 3.8890e − 003 3.8890e − 003
29 1.9473e − 003 1.9473e − 003 1.9473e − 003 1.9473e − 003 1.9473e − 003 1.9473e − 003
210 9.7361e − 004 9.7361e − 004 9.7361e − 004 9.7361e − 004 9.7361e − 004 9.7361e − 004
211 4.8604e − 004 4.8604e − 004 4.8604e − 004 4.8604e − 004 4.8604e − 004 4.8604e − 004
212 2.4209e − 004 2.4208e − 004 2.4208e − 004 2.4208e − 004 2.4208e − 004 2.4208e − 004
213 1.2045e − 004 1.2006e − 004 1.2006e − 004 1.2006e − 004 1.2006e − 004 1.2006e − 004
214 6.5135e − 005 1.1517e − 004 5.9032e − 005 5.9032e − 005 5.9032e − 005 5.9032e − 005
215 1.1517e − 004 2.9680e − 005 2.8527e − 005 2.8517e − 005 2.8517e − 005 2.8517e − 005
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Table 4. The error in discrete maximum norm for increasing values of N and M (ε = 10−2).

Number of local mesh points (M)

N ↓ 16 32 64 128 256 Il’in

24 3.4150e − 001 3.5784e − 001 2.8359e − 001 2.5883e − 001 2.5778e − 001 2.6892e − 001
25 2.0838e − 001 1.2350e − 001 1.0858e − 001 1.2002e − 001 1.2575e − 001 1.3150e − 001
26 1.1664e − 001 6.8098e − 002 5.4364e − 002 5.9475e − 002 6.2068e − 002 6.4685e − 002
27 7.7242e − 002 4.3710e − 002 2.7433e − 002 2.9507e − 002 3.0747e − 002 3.2150e − 002
28 6.0824e − 002 3.2896e − 002 1.8772e − 002 1.4807e − 002 1.5288e − 002 1.6048e − 002
29 5.3586e − 002 2.7966e − 002 1.5097e − 002 8.6818e − 003 7.6768e − 003 8.0101e − 003
210 5.0258e − 002 2.5677e − 002 1.3359e − 002 7.2197e − 003 4.1727e − 003 4.0005e − 003
211 4.8680e − 002 2.4598e − 002 1.2540e − 002 6.5213e − 003 3.5287e − 003 1.9991e − 003

5. Conclusion

We consider an ε-uniform numerical method for a singularly perturbed two-point BVP, whose
significance is that, although it uses an equidistant mesh, it requires no exact solution of a local
BVP. The resulting numerical method can also be proved to converge to the true solution of
the BVP uniformly in ε, which shows that it is possible to develop a fully discrete ε-uniform
numerical method on uniform meshes. We also note that the method has the potential to catch
internal layers. Finally, we report that the numerical experiments are in good agreement with the
theoretical results.
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