Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/4797
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTayfur, Gökmen-
dc.contributor.authorSevil, Hakkı Erhan-
dc.contributor.authorGezgin, Erkin-
dc.contributor.authorÖzdemir, Serhan-
dc.date.accessioned2017-02-07T07:41:27Z
dc.date.available2017-02-07T07:41:27Z
dc.date.issued2009-02
dc.identifier.citationTayfur, G., Sevil, E. H., Gezgin, E., and Özdemir, S. (2009). Trait-based heterogeneous populations plus (TbHP+) genetic algorithm. Mathematical and Computer Modelling, 49(3-4), 709-720. doi:10.1016/j.mcm.2008.08.016en_US
dc.identifier.issn0895-7177
dc.identifier.issn0895-7177-
dc.identifier.urihttp://dx.doi.org/10.1016/j.mcm.2008.08.016
dc.identifier.urihttp://hdl.handle.net/11147/4797
dc.description.abstractThis study developed a variant of genetic algorithm (GA) model called the trait-based heterogeneous populations plus (TbHP+). The developed TbHP+ model employs a memory concept in the form of immunity and instinct to provide the populations with a more efficient guidance. Also, it has an ability to vary the number of individuals during the search process, thus allowing an automatic determination of the size of the population based on the individual qualities such as character fitness and credit for immunity. The algorithm was tested against the classical GA model in convergence and minimum error performance. For this purpose, 5 different mathematical functions from the literature were employed. The selected functions have different topological characteristics, ranging from simple convex curves with 2 variables to complex trigonometric ones having several hilly shapes with more than 2 variables. The developed model and the classical GA model were applied to finding the global minima of the functions. The comparison of the results revealed that the developed TbHP+ model outperformed the classical GA in faster convergence and minimum errors, which may be explained by the adaptive nature of the new paradigm.en_US
dc.language.isoenen_US
dc.publisherElsevier Ltd.en_US
dc.relation.ispartofMathematical and Computer Modellingen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCharacter fitnessen_US
dc.subjectGenetic algorithmen_US
dc.subjectHeterogeneous populationen_US
dc.subjectImmunityen_US
dc.subjectInstincten_US
dc.subjectMemory concepten_US
dc.titleTrait-based heterogeneous populations plus (TbHP+) genetic algorithmen_US
dc.typeArticleen_US
dc.authoridTR2054en_US
dc.authoridTR130950en_US
dc.authoridTR130615en_US
dc.institutionauthorTayfur, Gökmen-
dc.institutionauthorSevil, Hakkı Erhan-
dc.institutionauthorGezgin, Erkin-
dc.institutionauthorÖzdemir, Serhan-
dc.departmentİzmir Institute of Technology. Civil Engineeringen_US
dc.departmentİzmir Institute of Technology. Mechanical Engineeringen_US
dc.identifier.volume49en_US
dc.identifier.issue3-4en_US
dc.identifier.startpage709en_US
dc.identifier.endpage720en_US
dc.identifier.wosWOS:000262124500034en_US
dc.identifier.scopus2-s2.0-58149090274en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1016/j.mcm.2008.08.016-
dc.relation.doi10.1016/j.mcm.2008.08.016en_US
dc.coverage.doi10.1016/j.mcm.2008.08.016en_US
dc.identifier.scopusqualityN/A-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept03.03. Department of Civil Engineering-
crisitem.author.dept03.10. Department of Mechanical Engineering-
Appears in Collections:Civil Engineering / İnşaat Mühendisliği
Mechanical Engineering / Makina Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
4797.pdfMakale3.93 MBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

2
checked on Oct 26, 2024

Page view(s)

312
checked on Nov 18, 2024

Download(s)

142
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.