
Mathematical and Computer Modelling 49 (2009) 709–720

Contents lists available at ScienceDirect

Mathematical and Computer Modelling

journal homepage: www.elsevier.com/locate/mcm

Trait-based heterogeneous populations plus (TbHP+) genetic algorithm
Gokmen Tayfur a,∗, Hakki Erhan Sevil b, Erkin Gezgin b, Serhan Ozdemir b
a Department of Civil Engineering, Izmir Institute of Technology, Gulbahce Kampus, Urla, Izmir 35340, Turkey
b Department of Mechanical Engineering, Izmir Institute of Technology, Gulbahce Kampus, Urla, Izmir 35340, Turkey

a r t i c l e i n f o

Article history:
Received 27 November 2007
Received in revised form 6 August 2008
Accepted 7 August 2008

Keywords:
Genetic algorithm
Memory concept
Immunity
Instinct
Character fitness
Trait
Heterogeneous population

a b s t r a c t

This study developed a variant of genetic algorithm (GA) model called the trait-based
heterogeneous populations plus (TbHP+). The developed TbHP+ model employs a
memory concept in the form of immunity and instinct to provide the populations with
a more efficient guidance. Also, it has an ability to vary the number of individuals during
the search process, thus allowing an automatic determination of the size of the population
based on the individual qualities such as character fitness and credit for immunity. The
algorithm was tested against the classical GA model in convergence and minimum error
performance. For this purpose, 5 different mathematical functions from the literature
were employed. The selected functions have different topological characteristics, ranging
from simple convex curves with 2 variables to complex trigonometric ones having several
hilly shapes with more than 2 variables. The developed model and the classical GA
model were applied to finding the global minima of the functions. The comparison of the
results revealed that the developed TbHP+model outperformed the classical GA in faster
convergence and minimum errors, which may be explained by the adaptive nature of the
new paradigm.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The classical GA model has been commonly employed in solutions of many engineering problems. It roughly involves
the following steps: Creation of a randomly formed gene pool, selection, cross-over, mutation, and fitness evaluation. Fig. 1
shows a schematic diagramof a single cyclewithout themutation operation. The gene pool represents the space of solutions.
Through a proper selection process of the individuals, segments of chromosomes are swapped to generate a new set of
solutions. To avoid getting trapped in local minima due to premature convergence, a proper amount of timed mutation is
applied by flipping alleles or bits on the chromosome strings. Finally, the fitness values of each solution set are evaluated.
This evaluation decides whether another cycle or generation is needed or fitness levels of a certain set are sufficient. More
on the basics of GAs could be found in detail in [1,2], and even in [3].
This classical GAmethod although solvesmanyproblems, itwould often, for some complex problems, take a large number

of iterations to reach the optimal solution. Also, in some cases, it gets trapped in a local minimum. In addition, due to the
perturbation effect, the solutionmay get unstable such that instead of going in the right direction it may totally diverge from
the optimal solution.
This study intends to develop a variant of GA that would be faster andmore efficient in reaching an optimal solution. The

goal is to create an adaptive error-driven algorithm. The idea is to develop a simpleGA code thatwould consider two features.
Firstly, only the best parent, instead of two best, is to be used for reproduction. Secondly, cross-over is to be replaced by an
error-drivenmutation rate. The primitive version of this ideawas put to test by Ozdemir and Karakurt [4] and Alpay et al. [5].

∗ Corresponding author.
E-mail addresses: gokmentayfur@iyte.edu.tr (G. Tayfur), serhanozdemir@iyte.edu.tr (S. Ozdemir).

0895-7177/$ – see front matter© 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.mcm.2008.08.016

http://www.elsevier.com/locate/mcm
http://www.elsevier.com/locate/mcm
mailto:gokmentayfur@iyte.edu.tr
mailto:serhanozdemir@iyte.edu.tr
http://dx.doi.org/10.1016/j.mcm.2008.08.016

710 G. Tayfur et al. / Mathematical and Computer Modelling 49 (2009) 709–720

Fig. 1. Flow chart of conventional GA.

Fig. 2. Flow chart of RPA.

In [4], this paradigm was called the ‘‘Responsive Perturbation Algorithm (RPA)’’, which was population based and adaptive
(Fig. 2). Basically, RPA uses the general philosophy of combining genetic algorithms (GAs) with simulated annealing (SA) in
the very basic principles. When a population is created, individuals are not converted to binary strings, since no crossing
occurs. Instead of selecting the best performing individuals, only the best is kept. Furthermore, perturbation replaces the
crossing. A new family of individuals is created by perturbing the best solution with a radius that is a function of both
character and the time (temperature in SA sense, [6,7]). This guarantees that all the offsprings are the variations of the
best parent, not the offsprings of the best and the second best. Also as more iterations are run, solutions are ‘tempered’ as
search radii get smaller and smaller, resulting in narrower search circles. Nevertheless, RPA had no advanced ageing and
search schemes. RPA had an error-driven perturbation but its amplitude was driven more by a scheduled reduction than
the reduction in error. Also, the lack of characters meant that the population distribution was not economically dispersed.

G. Tayfur et al. / Mathematical and Computer Modelling 49 (2009) 709–720 711

Table 1
Population distribution

Trait Step 1 Step 2 Step 3

Greedy 0.4N 0.3N 0.05N
Curious 0.2N 0.1N 0.05N
Normal 0.1N 0.2N 0.25N
Conservative 0.1N 0.3N 0.6N
Fickle 0.1N 0.05N 0.03N
Erratic 0.1N 0.05N 0.02N

N: Total number of individuals.

It must be noted that variants of GAs are not the only alternatives to numeric problems, since numeric techniques are also
well-established. One typical work that may show the historical perspective is [8].
A more advanced version of RPA was developed by Alpay et al. [5] under the name of ‘‘Trait-based Heterogeneous

Populations (TbHP)’’. The most important feature of this new GA code was the implementation of the six characters that
are explained in the following paragraphs in detail. This ensured a relatively economical distribution of the solutions where
and when they are needed. This was achieved by spontaneous ageing that was triggered when one of the selected traits was
not the dominant character during the running of the program. All the six traits were preserved in the new TbHP+ version.
RPA and TbHP were applied for training feed forward back propagation and the radial basis function neural networks

with relatively fast convergence [5]. Alpay et al. [5] have shown the superiority of TbHP over RPA on training of RBFNN
[radial basis function neural networks] on a specific machining data [9]. A similar study may be found in [7].
Although TbHP is quite robust and more advanced compared to conventional GA and RPA, it lacks the means to use the

resources more efficiently. The objective of this study is to develop more advanced version of TbHP. This advance version
[here called TbHP+] is equipped with more features that would overcome the shortcomings of TbHP. The details of TbHP+
are given below.

2. TbHP+ genetic algorithm

Instead of a population of homogeneous individuals, as it is the case for generic Genetic Algorithms (GAs) and RPA, a
population of heterogeneous individuals has been set to compete in TbHP+. Here homogeneous refers to alike individuals.
The term heterogeneous, on the other hand, describes dissimilar ones, varying in a hierarchy of radii and perturbation
amplitude. The novelties are manifold. First of all, every individual is made to differ by assuming a character or trait.
Individuals with the highest fitness become the current dominant character and yield offsprings that carry predominantly
the traits of the winner parent. Initially, the majority of the population is deliberately made greedy (one of the group with
large search radii) so as to put more individuals on the look out for better neighborhoods. Then, as the ageing (the reduction
in the search radii of all traits and the increase in the number of individuals of relatively more conservative traits) starts,
gradually more settled (conservative) traits make up the majority.
Human characteristics were imitated in creating the traits (greedy, curious, normal conservative, fickle, and erratic)

(Table 1). Greedy is the trait with the most extensive search radius among the main traits. Curious is meant to cover an area
hierarchically only second to greedy. Normal and conservative traits are poised at the bottom of the character hierarchy. The
trait conservative has the lowest perturbationpercentage among all the others. In otherwords, conservative solutions are the
closest ones to the parent. Normal characters are second to conservative solutions. Fickle and especially erratic traits were
meant to find the searched domain faster and keep the population out of the local stagnation zones. Since, as their names
suggest, they are at the fringes of the population distribution, only a small percentage of the resources are committed to
sustain these individuals (Table 1). However, erratic ones are the most unstable characters at the beginning. This situation
changes considerably as they get older.
Ageing helps zoom in on the solution with an ever increasing precision (Fig. 3). Fig. 3a shows starting point and target

location. Figs. 3b and c demonstrate the progress of the program at the initial stage and in time, respectively. At this stage,
the erratic trait becomes dominant and allows fast advance towards the target. Fig. 3d depicts the final stage when ageing
starts. Another aspect of ageing is that a greater percentage of the population is concentrated in and around the center. Not
only the perturbation amplitude of the individuals is dampened to pinpoint the solution set but alsomore individuals are put
to work close to it. In simple, nonscientific terms, the population debuts with a young greedy population, and ends up with
an older population who are mostly conservative in nature. As individuals get older, the characteristics that are dominant
at the beginning become progressively recessive.
In TbHP+, on the contrary to TbHP, more than one ageing policies have been implemented. The first one is based on

a schedule, and the ageing is performed stepwise in a predetermined way. This has not turned out to be quite such a
satisfactory technique. In the second method, called the spontaneous ageing, as long as greedy is the dominant character,
no ageing takes place. Once the curious (second to greedy trait in search radius-wise) becomes successively the dominant
character, ageing commences. Whenever greedy is not the dominant character, the optimal solution [target] falls within
reach. In other words, at this instant, the target is closer to the center than the greedy individuals. Once the target is found,
its exact coordinates must be determined. Determination of the coordinates is attained through the start of ageing which

712 G. Tayfur et al. / Mathematical and Computer Modelling 49 (2009) 709–720

Fig. 3. Schematic representation of ageing process: (a) Starting point (point B) and target location (point A); (b) initial progress; (c) progress in time; and
(d) final stage where ageing starts.

involves taking of two steps. The first is to deploymore individuals at the vicinity of the target and keep pulling them towards
the center in phasewith the target. The second is to reduce all the search radii simultaneously, so that all the populations are
pulled inward. Aging process and traits are thus applied to accelerate convergence. Individuals with different characters are
used to cover a search area and as the iterations continue their search area is reduced to find a neighbor-optimal solution set.
Table 1 expounds the population [traits] distribution in TbHP+. The distribution of the population is divided into three

phases in the duration of the code. For example, the greedy trait assumes 40% of the population in the 1st, 30% in the 2nd, and
5% in the 3rd phase. The decision over the population distribution is completely experiential. The breakdown of population
given in Table 1 is directed towards one goal only, tracking down the optimal solution. The first phase starts with the current
choice of percentage where a majority of the candidate solutions are spread out towards the perimeter of the maximum
search radius. Few are left inside this circle, in case, at the start, optimal solution vector may happen to lie already in the
neighborhood. Since this probability is rather small, so is the percentage of the population near the center. Again referring
to the Table 1, normal and conservative traits, which happen to be located close to the center of the search radii, constitute
only the 20% of the whole. In other words, the belief that initially the solution lies close to the center is only 20%. The second
phase is switched on when a candidate solution is detected at the perimeter. This leads to the start of the ageing process.
Contraction of the population towards the center takes place. As it might be noticed from the same table, the ‘‘look-outs’’
at the perimeter are not called back. Traits such as greedy and fickle still keep searching for possible better solutions away
from the center. However, this time, their perturbation amplitude and the distributions are reduced. Our belief, at this second
phase, that the solution might be close to the center, namely, the population sums of normal and conservative characters
is 50%. The last phase sets out with a strong belief that the solution is almost definitely in the vicinity of the center. The
breakdown of the last stage from the table reveals now that this belief is around 85%with the final and conclusive reduction
in the amplitudes of the perturbations. In this last stage, by the nature of ageing, traits come close to their lower neighbors
in the traits hierarchy. For example, the normal trait in the last stage bears the features of the conservative trait in the first
stage (see Table 1).
When the program is initiated, the solution is, in general, far from the starting point. Initially sparse and expanded

populations congregate at the center. Hence, at the beginning, most of the population is around the perimeter of the
searching area. As the iterations advance, populations try to find the best solution in the multiple search radii. Populations

G. Tayfur et al. / Mathematical and Computer Modelling 49 (2009) 709–720 713

Fig. 4. Population migration (a) early stage; (b) central migration.

Table 2
Perturbation percentage

Trait Step 1 Step 2 Step 3

Greedy ±20%–30% ±15%–20% ±10%–15%
Curious ±10%–20% ±7%–15% ±5%–10%
Normal ±2%–10% ±1%–7% ±0.5%–5%
Conservative ±0%–2% ±0%–1% ±0%–0.5%
Fickle ±30%–100% ±20%–50% ±15%–25%
Erratic ±100%–1000% ±50%–500% ±25%–100%

are not allowed to stay fixed in the domain but rather move around in an optimal fashion (called population migration),
Fig. 4. At the early stages, the optimum solution falls in the search area of the erratic individuals, Fig. 4a. After a number of
iterations, the best solution tends tomove towards the center of the searching area triggering the aging process, Fig. 4b. This
phenomenon is the by-product of the ageing process.
The search radius of each character is given in Table 2. Phases in this table designate stages of the running of the code.

Phase 1 represents early stages until phase 2 which starts at around middle of the cycle, and the third phase takes place
just about in the remaining 10% of the iterations. According to Table 2, for example, the individuals in the greedy trait are
perturbed around the optimal solution by 20%–30% in the 1st, 15%–20% in the 2nd, and finally 10%–15% in the 3rd phase. The
perturbation here is obtaining a set of neighboring solutions that are found by multiplying a predetermined amplification
factor by the optimal solution.
In addition to the above mentioned characteristics, the TbHP+ contains features such as instinct (exploitation) and

immunity (credit) (Fig. 5). Fig. 5a showshowTbHP+would have proceeded in the absence of instinct, froma randomstarting
point to optimal solution. Fig. 5b depicts the phase that the code ‘‘learns’’ the optimal direction. If there is no deviation from
that course, to save the resources, only the solutions within a slice in the forward (learned) direction are computed, and

714 G. Tayfur et al. / Mathematical and Computer Modelling 49 (2009) 709–720

Fig. 5. Simulation of instinct: (a) phase of absence of instinct; (b) phase of optimal direction; (c) instinct mode phase; (d) switch of instinct mode phase.

the rest are discarded (Fig. 5c). This phase is called the instinct mode. When instinct mode gradually gives rise to increasing
errors, this points to the fact that a new direction must be learned, and instinct mode must be switched off (Fig. 5d). The
exploration versus exploitation dilemma has been articulated by various researchers in different forms. This is equally valid
in computing and simulation arena. Exploiting, as it is already known, is cheaper than the effort to widen the current pool
of information. This concern has been the basis to the newly developed concept of instinct in populations in this study.
Instead of a life-long learning, either learning (exploration) or instinct (exploitation) is turned on and off while monitoring
their performances. When the simulation is in the instinct mode, if the performance (fitness) worsens, it is switched off, and
learning resumes. When the immunity is added to the algorithm, an important decrease in the successive error percentage
and CPU time is achieved. During aging process, if a vectorial direction of the winner individuals is detected, by virtue of the
instinct, the program continues by the half of the population in that direction until the results start deviating from optimal
solution.
Fig. 6 roughly summarizes the algorithm for TbHP+. Note that code details were omitted for clarity.

3. Test Functions

We tested the performance of the developed TbHP+model against 5 different functions that are summarized below.
1. De Jong’s 1st Test Function [3]: It is continuous and has a convex shape (Fig. 7). It is commonly used in performance

evaluation. The mathematical expression of the function, its global minimum, and the solution space are given as:

f (x) =
n∑
i=!

x2i , −5.12 ≤ xi ≤ 5.12 (solution space)

f (x) = 0, when xi = 0 (global minimum point)

G. Tayfur et al. / Mathematical and Computer Modelling 49 (2009) 709–720 715

Fig. 6. Flowchart of the TbHP+ program.

when the number of variables is accepted as n = 2, the graph of the function is presented in Fig. 7 where one can see that
the global minimum is at x1 = 0 and x2 = 0.
2. Rastrigin’s 6th Test Function [10]: The mathematical form of the function, with the solution space and global

minimum, is given below as:

f (x) = 10n+
n∑
i=1

(x2i − 10 cos(2πxi)), −5.12 ≤ xi ≤ 5.12

f (x) = 0, when xi = 0.

Assuming n = 2, the graph of the function is presented in Fig. 8 where one can see that the function has many local
minimums.
3.Michalewicz’s 12th Test Function [2]: It contains local minima as many as the factorial of variables, i.e. if the number

of variables is 3, it would contain 6 local minima. In this study, we assumed 5 variables and thus there are 120 local minima.
The mathematical expression of the function, with the specified solution space and the global minimum when n = 5, is

716 G. Tayfur et al. / Mathematical and Computer Modelling 49 (2009) 709–720

Fig. 7. De Jong’s 1st Test Function and its global minimum [for n = 2 variables].

Fig. 8. Rastrigin’s 6th Test Function and its global minimum [for n = 2 variables].

summarized as:

f (x) = −
n∑
i=1

sin(xi)
[
sin
(
i ∗ x2i
π

)]2m
, 0 ≤ xi ≤ π

G. Tayfur et al. / Mathematical and Computer Modelling 49 (2009) 709–720 717

Fig. 9. Michalewicz’s 12th Test Function and its global minimum [for n = 2 variables].

f (x) = −4.687, whenm = 10 and n = 5 and x1 = 2.20895, x2 = 1.57153, x3 = 1.27608, x4 = 1.91898,
x5 = 0.99552.

Note thatm shows the steepness of the hills in the solution space and therefore, for largerm values, it is harder to reach
the global optimal solution. Assuming n = 2, the graph of the equation is presented in Fig. 9 where one can also see the
global minimum position [for the sake of clarity, we showed n = 2 variable case in Fig. 9].
4. Goldstein–Price’s Test Function [11]: This function has two variables. The mathematical form of the function, its

specified solution space, and its global minimum location are given as:

f (x1, x2) =
[
1+ (x1 + x2 + 1)2 · (19− 14x1 + 3x21 − 14x2 + 6x1x2 + 3x

2
2)
]

·
[
30+ (2x1 − 3x2)2 · (18− 32x1 + 12x21 + 48x2 − 36x1x2 + 27x

2
2)
]

−2 ≤ xi ≤ 2, i = 1, 2
f (x1, x2) = 3 x1 = 0 x2 = −1 [Global minimum position].

Fig. 10 shows the graph of the function having 2 variables where one can also see the global minimum position.
5. Schwefel’s 7th Test Function [8]: The function, its specified solution space, and global minimum are given as:

f (x) =
n∑
i=1

−xi · sin(
√
|xi|), −500 ≤ xi ≤ 500

f (x) = −837.9658 xi = 420.9687, i = 1, 2.

The graph of the function for n = 2 is presented in Fig. 11 where one can also see the global minimum position of the
function within the specified solution space.

4. Model testing

The developed TbHP+ and the classical GAmodels, for performance comparison purpose, were applied to find the global
minimums of the functions summarized above. Initially random values in between [0, 1] were assigned for the variables.
Mean absolute error measure (MAE) is used to test the performance of the models. For each test function, the models were
run 10 times and themean of themean absolute error of each runwas computed for eachmodel. Table 3 shows the summary
of 10 runs by the models for each test function. For each run, 1000 iterations were performed. While the computer code for
TbHP+was developed by the authors, the package program Evolver was employed for the classical GA [12]. The algorithm
employs the Recipe Solving Method to minimize (or maximize) any objective function under specified constraints [12].

718 G. Tayfur et al. / Mathematical and Computer Modelling 49 (2009) 709–720

Fig. 10. Goldstein–Price’s Test Function and its global minimum [for x = 2 variables].

Fig. 11. Schwefel’s 7th Test Function and its global minimum [for n = 2 variables].

As can be seen in Table 3, for each run for the first test function, TbHP+model significantly outperformed the classical GA.
For this case, theMAE= 96.7E−326which is practically equal to zero (no error) for TbHP+model versusMAE= 0.01317 for
the classical GAmodel. For the second test model, TbHP+ also showed superior performance withMAE= 1.54E−18 [which
means practically zero error] versusMAE= 0.8056 in the case of classical GA. For the 3rdmodel, TbHP+ had almost 50% less

G. Tayfur et al. / Mathematical and Computer Modelling 49 (2009) 709–720 719

Table 3
MAE for TbHP+ and the classical GA in finding global minimums of five different mathematical functions

Run De Jong’s 1st Test
Function

Rastrigin’s 6th Test
Function

Michalewicz’s 12th
Test Function

Goldstein–Price’s Test
Function

Schwefel’s 7th Test
Function

MAE MAE MAE MAE MAE
TbHP+ Classical GA TbHP+ Classical GA TbHP+ Classical GA TbHP+ Classical GA TbHP+ Classical GA

1 3.34E−326 2.80E−02 4.70E−19 1.13E+00 2.77E−06 2.18E−01 5.58E−02 9.85E+01 3.12E−05 2.80E+00
2 1.77E−326 4.66E−02 6.02E−19 4.41E−01 1.47E−07 6.53E−02 1.54E−01 8.26E+01 2.76E−05 2.80E−01
3 1.24E−326 3.09E−03 2.46E−19 1.35E+00 1.49E−01 5.36E−02 2.58E−01 8.93E+01 2.70E−05 2.06E+00
4 2.53E−326 3.11E−03 2.83E−18 3.62E−01 1.63E−01 1.03E−01 6.91E−03 9.20E+01 4.55E−05 3.40E−01
5 1.89E−326 1.15E−02 2.69E−18 9.19E−02 1.49E−01 7.51E−02 3.83E−01 3.71E−01 3.85E−05 5.28E−01
6 1.44E−326 1.34E−02 2.69E−18 1.82E+00 3.55E−01 2.75E−02 2.43E−02 1.05E+02 2.81E−05 2.50E+00
7 2.84E−326 5.36E−03 3.41E−20 1.05E+00 1.62E−01 6.96E−01 2.46E−02 2.60E+00 2.79E−05 9.95E−02
8 2.08E−326 5.29E−04 2.53E−18 1.30E+00 1.91E−01 2.42E−01 3.97E−03 5.13E+00 3.48E−05 1.56E+00
9 2.05E−326 6.79E−04 8.66E−19 1.77E−01 4.12E−02 1.98E−01 1.95E+00 2.62E+00 2.91E−05 1.86E−01
10 1.78E−326 1.95E−02 2.42E−18 3.32E−01 3.26E−01 3.34E−01 2.75E−01 9.03E+01 3.66E−05 3.94E+00
MeanMAE 96.7E−326 1.32E−02 1.54E−18 8.06E−01 1.54E−01 2.01E−01 3.14E−01 5.69E+01 3.26E−05 1.43E+00

Table 4
Comparison of models with respect to number of iterations and corresponding errors

Trials De Jong’s 1st Test Function Rastrigin’s 6th Test Function Michalewicz’s 12th Test Function

MAE MAE MAE
Iteration # TbHP+ Classical GA Iteration # TbHP+ Classical GA Iteration # TbHP+ Classical GA

1 143 96.7E−326 1.88E+00 109 1.54E−18 1.04E+01 221 1.54E−01 1.02E+00
2 154 96.7E−326 2.03E+00 97 1.54E−18 2.49E+01 540 1.54E−01 3.76E−01
3 152 96.7E−326 1.48E−01 24 1.54E−18 3.04E+01 548 1.54E−01 4.54E−01
4 147 96.7E−326 9.70E−01 170 1.54E−18 5.81E+00 618 1.54E−01 2.97E−01
5 153 96.7E−326 1.59E+00 23 1.54E−18 7.89E+00 533 1.54E−01 4.39E−01
6 147 96.7E−326 4.88E−01 457 1.54E−18 2.16E+00 316 1.54E−01 1.32E+00
7 151 96.7E−326 8.65E−01 51 1.54E−18 1.86E+01 601 1.54E−01 5.66E−01
8 153 96.7E−326 6.13E−01 89 1.54E−18 2.29E+00 807 1.54E−01 2.11E−01
9 149 96.7E−326 5.89E−02 54 1.54E−18 8.50E+00 478 1.54E−01 2.84E−01
10 147 96.7E−326 4.73E+00 245 1.54E−18 1.47E+00 424 1.54E−01 8.26E−01

Trials Goldstein–Price’s Test Function Schwefel’s 7th Test Function

MAE MAE
iteration # TbHP+ Classical GA iteration # TbHP+ Classical GA

1 692 3.14E−02 3.22E+01 693 3.26E−05 1.56E+00
2 751 3.14E−02 8.97E+01 382 3.26E−05 8.84E−01
3 732 3.14E−02 8.21E+01 353 3.26E−05 1.96E+00
4 78 3.14E−02 4.68E+00 306 3.26E−05 3.19E+00
5 805 3.14E−02 9.25E+01 798 3.26E−05 5.12E+00
6 984 3.14E−02 8.45E+01 794 3.26E−05 1.21E−01
7 871 3.14E−02 2.35E+00 780 3.26E−05 1.40E−01
8 727 3.14E−02 1.10E+02 709 3.26E−05 5.97E−02
9 188 3.14E−02 1.15E+02 657 3.26E−05 1.84E+00
10 961 3.14E−02 5.47E−01 335 3.26E−05 9.43E−01

error than classical GA for each run. For the 4th test function, almost 200 times less error is producedby thedevelopedTbHP+
model with MAE = 3.14E−01 against MAE = 56.87 of classical GA model. Similar performance was also observed when
TbHP+ is applied to the last test function. The computed mean MAE= 3.263E−05 for TbHP+ while mean MAE = 1.4289
for the classical GA. The ratio is almost 44000.
As noted above, the mean of MAE of 10 runs for each test function is given in Table 3. Table 4 shows the number of

iterations to reach this mean error by the TbHP+ model for each test function. For this purpose, we also did 10 different
runs. The table, at the same time, shows the error produced by the classical GA for the same number of iterations. Note
that, the classical GA, as presented in Table 3, is never able to reach the minimum error level captured by the TbHP+. For
example, the mean of MAE of the 10 runs for the first test function is 96.7E−326 (see Table 3). Table 4 shows that it took
only 143 iterations for the TbHP+ in the first run to reach that error. For the same number of iterations however the classical
GA produced error of 1.883. Considering the results of 10 runs for the first test function, we can conclude that it took, on the
average, 150 iterations for the TbHP+ to reach 97.7E−326 [practically zero] error level. For the same number of iterations,
the classical GA, on the average, produced 1.34. This shows the superiority of TbHP+ which can produce practically zero
error in a few iterations. Similar performancewas observed for the other test functions (Table 4). According to Table 4, it took
atmost 457 iterations for TbHP+ to reach theminimumerror of 1.54E−18 for the second test function. For the same number
of iterations, the classical GA produced error of 2.158. For the third test function, it took minimum 221 and maximum 807

720 G. Tayfur et al. / Mathematical and Computer Modelling 49 (2009) 709–720

iterations for the TbHP+ to reach the error of 0.154. For the same number of iterations, the classical GA produced 1.02 and
0.211mean absolute errors. As the functions becamemore complicated, as it was the case for the 4th and 5th test functions,
it took more iteration [still less than 1000] for the TbHP+ to capture the low level errors. The classical GA for the same
number of iterations produced significantly large errors.
Note that, the criteria of acceptance in the checkpoint of the TbHP+ can be adjusted in percent error to minimize the

computation time or computation precision.
The reasons behind the better performance of this newly developed algorithm are manifold. With respect to time, the

feature instinct is very efficient by slashing down the majority of the populations along the optimal path, or local optimal
paths. This way, only a slice of the candidate solutions is retained as long as error is decreased progressively. Learning of
the optimal new path resumes when the decrease in error stops, and an increase is observed. Even until ageing, overall
population and the population of the traits are allowed to vary with respect to the feats of the traits. This is made possible
through a very simple scheme of credit-assignment. After five successive wins of a certain trait, the individuals of other
traits are culled randomly so as to reduce inactive population. This feature is called the immunity, since successive feats by
a trait make this character immune to random culling.

5. Summary and conclusions

In the developed TbHP+ model, populations of homogenous individuals are transformed into populations of
heterogeneous individuals. Non-similar individuals introduce their respective traits in the competition. The set of winner
parents is replaced by the fittest individual who is made parent to yield offspring. Another concept that is implemented
in the model is called the spontaneous ageing which is triggered by the solution neighborhood. As long as greedy is the
dominant character, no ageing takes place. However, once the curious has emerged as the dominant character successively,
i.e. solution neighborhood lieswithin the search radii, ageing commence. Simulations have shown that ageing helps zooming
in on the solution with an ever increasing precision.
The model testing results showed that the developed TbHP+model significantly outperforms the classical GA model. It

produced minimum errors in small number of iterations [fewer than 200 for a simple test function and fewer than 1000 for
very complex test function] in reaching the global minimums. These results imply that the TbHP+model can be employed
in a variety of disciplines in solving very complex problems.
Creating characters of various radii is the strongest part of this code compared to the classical GA. The existence of traits

such as fickle and erratic almost always guarantees that this algorithm never gets trapped in local minima. Keeping these
two traits well and alive even towards the final few cycles of the whole program reflects the strategy of this algorithm.
While a fine-tuning is in progress in it’s final cycles, a few sceptics keep searching for better solutions. This advantage, when
combined with the adaptive nature of the code, gives the upper hand over GAs.

References

[1] T. Munakata, Fundamentals of the New Artificial Intelligence Beyond Traditional Paradigms, Springer-Verlag, New York, 1988.
[2] Z. Michalewicz, Genetic Algorithms+ Data Structures= Evolution Programs, Springer-Verlag, New York, 1992.
[3] K.D. De Jong, An analysis of the behavior of a class of genetic adaptive systems, Ph.D. Thesis, Dept. Computer and Communication Sciences, University
of Michigan, Ann Arbor., 1975.

[4] S. Ozdemir, M. Karakurt, A combined simulated annealing-genetic algorithm optimization variant for networks, in: Proceeding of MDP-8, Cairo
University Conference on Mechanical Design and Production, Cairo, Egypt, 2004.

[5] S. Alpay, L. Bilir, S. Ozdemir, Study of heterogeneous individuals, in: Proceedings of 4th International Symposiumon IntelligentManufacturing Systems,
September 6–8, Sakarya, Turkey, 2004, pp. 767–773.

[6] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, E. Teller, Equation of state calculations by fast computingmachines, J. Chem. Phys. 21 (6) (1953)
1087–1092.

[7] Z. Khan, B. Prasad, T. Singh, Machining condition optimization by genetic algorithms and simulated annealing, Comput. Oper. Res. 24 (7) (1997)
647–657.

[8] H.P. Schewefel, Numerical Optimization of Computer Models, Wiley & Sons, Chichester, 1981.
[9] T. Ozel, Development of a predictivemachining simulator for orthogonalmetal cutting process, in: 4th International Conference on EngineeringDesign
and Automation, July 30–August 2, Orlando, Florida, USA, 2000.

[10] L.A. Rastrigin, Extremal Control Systems, in: Theorethical Foundations of Engineering Series, Nauka, Moscow, 1974 (in Russian).
[11] A.A. Goldstein, I.F. Price, On descent from local minima, Math. Comput. 25 (115) (1971).
[12] Palisade Corporation, Evolver, the Genetic Algorithm Solver for Microsoft Excel, Newfield, New York, USA, 2001.

	Trait-based heterogeneous populations plus (TbHP+) genetic algorithm
	Introduction
	 TbHP + genetic algorithm
	Test Functions
	Model testing
	Summary and conclusions
	References

